Successful Conference in Timisoara - June 25-26 , 2015

July 17, 2015

The Magnetic Fluids & Applications meetings are organized in Timisoara since 1980 by the Politehnica University of Timisoara and the Timisoara Branch of the Romanian Academy. The workshop Multifunctional nanoparticles, magnetically controllable fluids, CNISFC_Siglacomplex flows, engineering and biomedical applications held in the period 25-26 June, 2015 with 16 oral presentations, among them 3 keynote lectures and 5 invited talks, proved to be an excellent opportunity for scientists, representatives of industry, master and PhD students from Germany, Russia, Slovakia, Hungary and the host country Romania to have very stimulating discussions towards cooperation for scientific and technological progress in the field.

The abstracts of oral and poster presentations may be seen here.

Latest Status on MPI Research

July 15, 2015

MPI is a tomographic imaging technique that detects the magnetic properties of iron-oxide nanoparticles injected into the bloodstream to produce 3D images. The new technology, invented by Philips, and first introduced in a 2005 Nature paper, gave rise to a new era in biological imaging. The first commercial machines to do Magnetic Particle Imaging are now available from Bruker. Check out their assessment of the technology (and advertisement) on their website:

The most recent international meeting about MPI was in Istanbul from March 26-28, 2015. And the next meeting will be in Lübeck, Germany, from March 16-18, 2016. Check out details about earlier and upcoming MPI meetings here:

Magnetic Particle Imaging Webinar Series

June 03, 2015

Magnetic Insight is proud to launch the first webinar series on Magnetic Particle Imaging, a unique, ultra-sensitive, high resolution molecular imaging approach that longitudinally detects nanoparticles regardless of depth. Sign up for all three!

Tuesday June 9, 2015 9:00 PST/ 18:00 CET  The Basics of MPI
Tuesday July 7, 2015 9:00 PST/ 18:00 CET  Preclinical Applications in MPI
Tuesday August 4, 2015 9:00 PST/ 18:00 CET  Nanoparticle Development for MPI Applications

World Record Speed of a Maglev Train: 603 km/h

April 21, 2015

The Central Japan Railway company reports that its magnetic levitation bullet train topped 603 km/h on Tuesday during a test run along a length of test track in the Yamanashi prefecture. This was enough to break its own 12-year-old, 361 mph world record set back in 2003. The train reportedly carried 29 engineers during its run.

Unfortunate is the fact that normal passengers will likely never be able to experience these exhilarating speeds -- unless something goes horribly wrong. The rail company plans to limit the trains to a pokey 313 mph for regular service when they come online in 2027. But even at these speeds, commuters could make it from Tokyo to Nagoya in about 40 minutes (less than half the time today's fastest bullet trains require). The company even has aspirations to export this technology to America -- specifically as a high-speed rail line running between New York City and Washington DC.

Use of Moessbauer Spectroscopy for Careful Assessment of Magnetic Nanoparticles

March 26, 2015

The use of Mossbauer spectroscopy is a simple and direct way to determine the amounts of magnetite and maghemite in an otherwise unknown sample. Quentin Pankhurst et al wrote a nice paper about how to use it and determine magnetite/maghemite weighting directly from the mean isomer shift of the total spectrum, which means that one can apply a simple model-independent curve-fitting methodology. Compared to the older way of using Moessbauer, this takes an awful lot of the work out of the process.

Check out the paper for yourself here.

How to Reliably Measure the SAR of Magnetic Hyperthermia Materials

March 26, 2015

Wildeboer, Southern and Pankhurst published recently a paper about the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia. They also carefully reviewed how to cope with non-adiabatic measurement conditions. This paper might very useful for the novice and more experienced user, as they went pretty thoroughly through the methodologies, and have tried to make some recommendations for both the measurement procedure, and the analysis method, that anyone will be able to follow.

Check out this very useful paper here.

How Good Are We at Making Magnetic Nanoparticles?

January 10, 2015

In a recent review - called a perspective - Lucia Gutierrez and collaborators wrote a nice discussion of the current state of the art in making magnetic nanoparticles. They write that many different single-core and multi-core magnetic iron oxide nanoparticles are being made for biomedical applications. There are more examples of multi-core magnetic particles than single-core ones, especially since coating of particle aggregates within a matrix will result in multi-core particles. However, it is difficult to control the number of cores, inter-core distances and spatial distribution when generating multi-core particles.

Many parameters of the synthesis procedure may have a strong effect on the particles obtained, including temperature, reagent concentrations, surfactant concentrations, and stirring conditions. This is one of the reasons why scaling-up of some of these synthesis routes is extremely complicated. Indeed, one of the difficulties that particle synthesis faces is in batch-to batch reproducibility. This has led to recent work on alternative reaction platforms that can offer more consistent results. One such platform is the use of microwave irradiation as a heating source.

Check out this interesting paper here.

Correction to "Synthesis of Magnetic Noble Metal (Nano)Particles" Paper

January 03, 2015

It is never fun to have to admit to a scientific error. However, it is truly appreciated by people discussing a specific paper and not being able to reproduce something. Ramachandran et al. just published a correction in an upcoming Langmuir paper. They had in an earlier paper reported about highly magnetic metallic nanoparticles. Which at the end turned out to be contaminations with iron, as seen by scanning electron microscopy (SEM) and energy-dispersive X-ray
spectroscopy (EDS) mapping. Thank you for being honest and pointing our magnetic particle community to possible problems with today's highly sensitive analysis methods.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 >

For more information, check out our Archives.

Photo of the Month
December 2014
Adsorbing nominal amounts of magnetite nanoparticles onto the surface of stiff, anisotropic ceramic particles like alumina enables the fast, parallel control of inorganic architectures with weak, scalable magnetic fields. This ultra-high magnetic response has been exploited to produce complex filler architectures in a new family of advanced composites. For more info, contact Randall Erb. To see the movie, click here.

Search this site with the power of
Last Modified: December 09, 2013 - 2013