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Hydrodynamics of magnetic drug targeting

P.A. Voltairasa,*, D.I. Fotiadisa, L.K. Michalisb

aDepartment of Computer Science, University of Ioannina, Ioannina 451 10, Greece
bDepartment of Cardiology, Medical School, University of Ioannina, Ioannina 451 10, Greece

Accepted 5 February 2002

Abstract

Among the proposed techniques for delivering drugs to specific locations within the human body, magnetic drug targeting

surpasses due to its non-invasive character and its high targeting efficiency. Although the method has been proposed almost 30 years

ago, the technical problems obstruct possible applications. It is the aim of the present work to classify the emerging problems and

propose satisfactory answers. A general phenomenological theory is developed and a model case is studied, which incorporates all

the physical parameters of the problem. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Magnetism is one of the major contributors in
biological and biomedical research (Adr.a and Nowak,
1998). Among the many applications of magnetic
carriers we mention some recent ones, such as the use
of magnetic microbeads in DNA array biosensors
(Miller et al., 2001), magnetic elastomers in otiatria as
a biomimetic prosthetic tympanic membrane (Kuznet-
sov et al., 2001) and ferrofluid internal tamponade in
retinal detachment surgery (Voltairas et al., 2001).
Magnetite nanoparticles have been detected recently in
the human hippocampus (Schultheiss-Grassi et al.,
1999). and can shed some light to the process of iron
biomineralization. Also the biological and neurophysio-
logical effects of magnetic fields is the subject of a big
controversy (Voustianiouk and Kaufmann, 2000).
The concept of magnetic drug targeting is not new

(Mosbach and Schr .oder, 1979). Efficient drug targeting
is vital for the medical treatment of various diseases and
among them of cardiovascular episodes, like stenosis
and thrombosis. Ferrofluids, magnetoliposomes and
magnetic micro and nanospheres are promising candi-
dates, for delivering drugs to specific locations within
the body, with high accuracy, minimum or no surgical
intervention and maximum concentration. Their build-
ing blocks, the ferromagnetic particles, with the

permanent magnetic polarization and the magneto-
phoretic mobility that they develop in an applied
magnetic field, are responsible for their improved
properties. The ternary phase structure of blood
(white–red blood cells and plasma), as well as the
plethora of particles that are present in the blood flow,
makes hemodynamics an exceedingly complex research
field. Visualization of complex flow patterns in the heart
has been accomplished recently, through combined
MRI and computational imaging techniques (Kilner
et al., 2000). Moreover, the response of blood in
magnetic fields in not yet completely known, though
there are some indications for the diamagnetic, para-
magnetic, or ferromagnetic character of its various
constituents (Higashi et al., 1997; Iwasaka et al.,
1994a,b; Haik et al., 2001).
The thrombolytic properties of high magnetic fields is

also an open field of investigation (Iwasaka et al., 1994a,
b; Iwasaka et al., 1996; Iwasaka et al., 1998). In
arteriosclerosis episodes, like stenosis and thrombosis,
what is important is to keep the thrombolytic drug,
usually aspirin, in contact with the source of the
problem, the endothelial cells, which are located along
the inner wall of the blood vessel. Some in-vitro and in-
vivo experiments have been performed in this direction
(Rusetski and Ruuge, 1990; Ruuge and Rusetski, 1993;
Torchilin, 2000). Nevertheless, firm theoretical founda-
tion of magnetic drug targeting is still lacking.
Provided that the biocompatibility of magnetic

particles will be accomplished, investigation of the
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conditions, for holding a ferrofluid drop on a blood
vessel wall, is required. For that purpose, a self-
consistent ferrohydrodynamic theory of magnetic drug
targeting is presented and a model case is examined, to
account for adhesion. The physical complexity, though
it is not avoided, is kept to the minimum. Technical
problems, concerning the design and the focusing of the
strength of the externally applied non-uniform magnetic
field, along the blood vessel wall, are stressed. We obtain
an upper bound of the mean blood flow velocity as a
function of the applied magnetic field, which permits
quantitative estimation of the adherence condition.
Comparison between the theoretically calculated and
the experimentally observed blood velocity, for the
carotid artery (Perret and Sloop, 2000), confirm the
presence of the upper bound, for given magnetic field
strength, blood and magnetic drug viscosity and
geometrical parameters of the model.

2. Ferrohydrodynamic formulation

2.1. General theory

In order to define conditions for adhesion of a
magnetic fluid (ferrofluid) drug on a blood vessel wall,
we encounter a highly complex situation, where we have
to incorporate magnetostatic field effects on two phase
(ferrofluid–blood) flow. Scrutiny requires taking also
into account the effects of static magnetic fields on
blood flow. The knowledge of the biological effects of
static or dynamic electromagnetic fields is still in its
infancy. The response of blood on static magnetic fields
depends on a variety of factors like: oxygen content, pH,
temperature gradients, etc. Thus, for example, plasma
and leucocytes (like in most biological tissues) are under
normal conditions diamagnetic, while oxy- and deox-
ygenated erythrocytes are dia- and paramagnetic,
respectively (Higashi et al., 1997). One might expect
that since hemoglobin, the basic molecule that consti-
tutes erythrocytes, contains an iron atom as a core,
should be ferromagnetic, but it is its overall structure
that results in the observed dia- or paramagnetic
character. Thus, conditions that will determine the
strength of the external static magnetic field and the
magnetic density of the ferrofluidic drug, for adherence,
must be optimized in order to avoid possible side effects
on the blood flow.
Although the exact rules that govern the physiology

of blood circulation are still unknown, due to the
diversity of the blood constituents and the complexity of
the vascular system (Fung, 1997), we will assume that
classical continuum hydrodynamical conservation laws
are applicable. Thus according to the general theory of
hydrodynamics, the blood and the magnetic drug flow
are described by the conservation of momentum, or

Navier–Stokes equations of fluid motion, in the absence
of temperature gradients, augmented for the case of the
magnetic drug with a magnetic body force term tMij;j
(Rosensweig, 1997):

tij;j þ tMij;j þ fi ¼ r
@ui

@t
þ uk ui;k

� �
; ð1Þ

where

tij ¼ �p dij þ Z ðui;j þ uj;iÞ; ð2Þ

tMij ¼ HiBj � m0
HkHk

2
þ

Z H

0

@ðuMÞ
@u

dH

� �
dij ; ð3Þ

Bi ¼ m0ðHi þ MiÞ ð4Þ

and by the conservation of mass:

@r
@t

þr � ðruÞ ¼ 0: ð5Þ

Here, tij is the stress tensor, tMij is the Maxwell stress
tensor, fi is the body force term, r is the density of
the fluid, ui is the velocity, p is the pressure, Z is the
viscosity, Bi is the magnetic induction, Hi is the
magnetic field, Mi is the magnetization, u ¼ 1=r is
the specific volume, m0 is the magnetic permeability of
vacuum and dij is the Kronecker delta. Hi ¼ H 0

i þ H0
i is

the total magnetic field due to external H0
i ; and internal

H 0
i origin. H 0

i is usually known as the demagnetizing
field produced by volume r � M or surface #n � M
magnetic charges, where #n is the unit outward vector.
The Einstein’s summation convention is adopted with
ð Þ;i 	 @=@xi; and bold characters denote vector fields. In
general it must be added to the Maxwell stress tensor (3)
a term due to the non-collinearity of the magnetic field
with the magnetization, proportional to M 
 H : In the
following we assume a magnetization collinear with
the applied magnetic field (Mi ¼ wHi; w is the magnetic
susceptibility), thus such a term can be neglected. To the
equations of fluid motion (1) the magnetostatic field
equations must be added:

r � B ¼ 0; ð6Þ

r 
 H ¼ 0: ð7Þ

From hereafter the subscripts ð Þ1 and ð Þ2 will denote
quantities of the magnetic drug and blood regions,
respectively. The formulation of the initial boundary
value problem (IBVP) (1), (5)–(7) is completed with the
appropriate initial and boundary conditions. The initial
conditions for a pulsating fluid flow are

uiðt ¼ t0; rÞ ¼ viðrÞ; i ¼ 1; 2: ð8Þ

We have two boundary surfaces Sk; k ¼ 1; 2; where k ¼
1 corresponds to magnetic drug–blood interface, and
k ¼ 2 to the blood vessel wall. When the magnetic drug
is in contact with the blood vessel wall (also known as
endothelium) we have to consider also another interface
S3 (Fig. 1(b)). On the interface S1 the boundary
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conditions for the hydrodynamic problem (1) are

#n � u1 ¼ #n � u2 ¼ 0; ð9Þ

#n 
 1uU ¼ 0; ð10Þ

1tij þ tMij U #ni #nj ¼ g ni;i; ð11Þ

1tij þ tMij U #ni #tj ¼ 0; ð12Þ

where g is the surface tension, #t is tangential unit vector,
and for the magnetic potential problem (5)–(6) are

#n � 1BU ¼ 0; ð13Þ

#n 
 1HU ¼ 0: ð14Þ

The abbreviation 1AU ¼ A2 � A1 is used in the
boundary conditions (9)–(14). The BCs (9)–(12) corre-
spond to the vanishing of the normal velocity compo-
nents, to the continuity of the tangential velocity
components, to the jump of the normal surface tractions
and to the continuity of the tangential surface tractions,
respectively, while the BCs (13)–(14) are the usual ones,
for the magnetostatic potential problem (6)–(7). The no
slip conditions for the velocity field on the interfaces
Sk; k ¼ 2; 3 read:

ui ¼ 0; i ¼ 1; 2: ð15Þ

In a general pulsating flow the interfaces Sk; k ¼ 2; 3 are
not rigid but deform in an elastic or viscoelastic manner.
Finally, the finiteness of the flow at the origin and at
infinity requires:

u1ðt; r-0Þ ¼ u0; ð16Þ

u2ðt; r-NÞ ¼ uN: ð17Þ

Similar conditions are necessary for the magnetic fieldH
as well. The above developed IBVP has to be solved for
the velocity field uðt; rÞ; for given magnetic field
configuration HðrÞ: In the general case, the apparent

difficulties are enormous, and so some special problems
will be discussed below.

3. The model

In order to appreciate on the difficulties that we
encounter in the solution, we just mention that even in
oversimplified cases where the hydrodynamic problem
(1) is neglected and one faces the solution of the
magnetostatic potential problem (6)–(7) and the free
boundary condition (11), results are obtained only with
properly designed finite element codes using super-
computers (Boudouvis and Scriven, 1993; Papathana-
siou and Boudouvis, 1999). For that purpose a
qualitative analysis will be presented, with emphasis
on the responsible physical mechanisms for adherence,
like the strength of the magnetic field and the
magnetization of the ferrofluidic drug that overcomes
the blood velocity. Well known analytical results will be
combined to account for the hydrodynamic drag exerted
by the blood flow on the ferrofluidic drop and for the
magnetophoretic driving force and its limitations. A
more elaborated investigation, with the development of
a numerical model, that will satisfy the full IBVP,
described above, will be the subject of future investiga-
tions.
We assume that the magnetic drug constitutes a

hemisphere like structure of radius R attached to the
blood vessel wall, with the coordinate origin located on
the center of the primitive circle on the equatorial plane
of the hemispherical drop (Fig. 1(a) and (b)). Diffusion
phenomena are neglected ðr1 ¼ r2Þ: The blood vessel is
considered to be an infinite, rectilinear, rigid, non-
porous cylindrical tube, with smooth internal surface, of
radius RV :We will address the case RVbR; in order for
the equatorial plane of the hemispherical drop to

Fig. 1. Model geometry. (a) Cross-section along the zx-plane. (b) Coordinate system.
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coincide with the blood vessel wall. The ferrofluidic drug
will originally be supplied through a catheter in the
blood stream, thus it is more likely to have a prolate
hemispheroidal like shape, but for computational
convenience we investigate here a hemispherical like
drop. The extension is straight forward for the prolate
case and will be discussed in a future work. Moreover,
adhesion effects, due to Van der Walls forces, possible
lift effects on the drug–vessel wall interface and buoy-
ancy forces will be neglected because of the strength of
the magnetophoretic force. In order to simplify further
the magnetic potential problem, we consider a diluted,
incompressible ferrofluidic drug, with no temperature
gradients. The first two of the above simplifications are
justified, since we usually need water based drugs to
avoid side effects. As far as the absence of temperature
gradient effects is concerned, this is acceptable for local
flow considerations. Then the third term of the Maxwell
stress tensor of Eq. (3) will be omitted, the magnetiza-
tion depends only on the external field ðHEH0Þ; and the
magnetic body force terms in the equation of fluid
motion (1) vanishes. We will limit our discussion on the
low Reynolds number regime, where inertial effects are
neglected. This is a legitimate approximation for
capillaries and thin vessels, or for possible slow viscous
flows in larger vessels. Then the equations of motion (1)
and the equation of continuity (5), reduce to the Stokes
flow for the velocity field u:

Zr2u ¼ rp; ð18Þ

r � u ¼ 0 ð19Þ

and the magnetostatic potential problem (6)–(7) is
neglected. Similarly, due to the above assumptions the
boundary conditions (11)–(12) are rewritten as

1pvn � pUþ pm þ pn ¼ pc; ð20Þ

1pvtU ¼ 0; ð21Þ

where

pvn ¼ 2Z #n �
@u

@ #n
; ð22Þ

pvt ¼ Z #t �
@u

@ #n
þ #n �

@u

@#t

� �
ð23Þ

are the normal and tangential viscous pressures on the
interface S1; respectively, with @=@ #n 	 #n � r; @=@#t 	 #t �
r; and pm; pn and pc have the usual notations as in
Rosensweig (1997):

pm ¼ m0

Z H

0

M dH ¼ m0

Z H

0

w H dH; ð24Þ

pn ¼
m0M

2
n

2
¼

m0w
2 H2

n

2
; ð25Þ

pc ¼ gr � #n ð26Þ

with Hn ¼ #n � H and Ht ¼ #t � H : In general, the con-
stitutive law M ¼ wH might be non-linear ðw ¼ wðHÞÞ;
but in the following we will limit ourselves to a linear
constitutive law ðw ¼ const:Þ: Notice the absence of
magnetic pressure terms in Eq. (18). By considering for
the moment axisymmetric solutions of the form

u ¼ r

Cðr; yÞ
r sin y

#ef

� �
; ð27Þ

which fulfill condition Eq. (19), and by taking the curl of
Eq. (18) this reduces to the following PDE for the
stream function C:

@2

@r2
þ
sin y

r2
@

@y
1

sin y
@

@y

� �� �2
C ¼ 0: ð28Þ

Following separation of variables of the form C ¼
rn sink y; and considering only the k ¼ 2 mode, the
permissible n’s are n ¼ �1; 2; 3; 4 thus:

C ¼
C1

r
þ C2r þ C3r

2 þ C4r
4

� �
sin2 y
2

: ð29Þ

The constants in Eq. (29) are determined from the BCs
(9)–(10), (12), (16)–(17) with

uN ¼ �u0 ¼ �u0 #ez; ðu0 > 0Þ ð30Þ

and #ez ¼ cos y#er � sin y#ey: Then the flows in regions (1)
and (2) become

u1 ¼ l3u0 1�
r

R

� �2� �
cos y #er � 1� 2

r

R

� �2� �
sin y #ey

� �
;

ð31Þ

u2 ¼ u0 2l1
R

r

� �
� 2l2

R

r

� �3
�1

" #
cos y #er

(

� l1
R

r

� �
þ l2

R

r

� �3
�1

" #
sin y #ey

)
ð32Þ

with

l1 ¼
2Z2 þ 3Z1
4ðZ1 þ Z2Þ

; l2 ¼
Z1

4ðZ2 þ Z1Þ
;

l3 ¼
Z2

2ðZ1 þ Z2Þ
: ð33Þ

Substitution of (31)–(32) into (18) and integration
deduces the pressures

p1 ¼ 5Z1l3u0r
cos y
R2

; ð34Þ

p2 ¼ 2Z2l1u0R
cos y

r2
: ð35Þ

The solution (31)–(32) does not satisfy the no slip
conditions (15). An efficient way to overcome this
problem is to search for surfaces where two different
flows coincide, and each one of the flows satisfy the
appropriate boundary conditions in the region separated
by the surface. This is permissible due to the linearity of
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the problem. Thus, for example, one such surface for the
two flows uup and udown is the following:

ðuup � udownÞ
2 ¼ 0: ð36Þ

In order to determine flows that satisfy the no slip
conditions (15), we searched for asymmetric flows of the
form (27) with C ¼ Cðr; y;fÞ and no singularities inside
the hemispherical drop, by the method of separation of
variables. The only acceptable non-singular solution was
the usual shear flow

us ¼ usx#ez: ð37Þ

Far away from the drop it is legitimate to assume that
the flow is of the Poiseuille type

up ¼ upðr; y;fÞðcos y #er � sin y#eyÞ ð38Þ

with

upðr; y;fÞ ¼ �u0
r

R

� �2
sin2 y� 2

r

R

� �
sin y cos f

� �
: ð39Þ

Looking for a surface of the form (36) inside the
magnetic drop, with uup ¼ uð1Þ and udown ¼ us we deduce
that such a surface has a maximum at xm=R ¼
ð�a7

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 8

p
Þ=4; y ¼ z ¼ 0; a ¼ us=ðl1u0Þ; and inter-

sects the equatorial plane x ¼ 0; along a closed elliptic
like curve with z ¼ 7R and y ¼ 7R=

ffiffiffi
2

p
E70:7R;

which is not far from the primitive circle r ¼ R: Notice
that 0pxm=Rp1 for a > 0 and a-0: Thus, for the
qualitative estimations presented here, the shear flow
presented above is a sufficient approximation for the
flow inside the drop and close to the blood vessel wall
(equivalent results are obtained if we use, instead of a
shear, a Poiseuille type flow). Following a similar
procedure for the determination of surfaces that
separate modified Poiseuille or shear flows outside the
drop, we obtained acceptable results only for the space
in front of the drop with respect to the direction of the
blood velocity, but not behind. Nevertheless, despite
the inconsistencies on the satisfaction of the no slip
conditions (15) inside and outside the ferrofluidic drop,
we will assume that the flow (31)–(32) is appropriate for
our qualitative computations. In a more accurate
calculation, it is expected that due to the no slip
condition, the drag that experiences the magnetic drop
will be a bit smaller from the one obtained from
Eqs. (31)–(32).

4. The adhesion condition

Even if we will derive a flow that satisfies the BCs (15)
we have also to fulfill the BC (20) on the free boundary
S1; that determines the type of deformation of the
magnetic drop in the presence of the blood flow. Our
primary concern here is to estimate under what
conditions the magnetic drop adheres to the blood

vessel wall. In order to keep the mathematics simple
without loosing the physical understanding, we might
assume that the shape of the drop remains unaltered
(hemispherical). Then we have to replace the capillary
pressure (26) by the equivalent for the sphere

pc ¼
2g
R
: ð40Þ

With the substitution of Eq. (40) into (20) the later
defines the stability boundary against decomposition
into smaller drops, and thus it may be considered as a
suitable adhesion condition. But even then we have to
introduce an adapted inhomogeneous magnetic field,
that will counteract to the blood flow, in order for the
condition (20) to result in an expression for the mean
blood velocity as a function of the maximum external
field. For our problem geometry a legitimate form of the
external magnetic field, would be in a first approxima-
tion that produced by a point source located outside the
body at x ¼ �d; y ¼ 0; z ¼ z; ðd; z > 0Þ; (see Fig. 2(b)),
of the form

H ¼
mðr þ d#ex � z#ezÞ

ðr2 þ d2 þ z2 þ 2dx � 2zzÞ3=2
ð41Þ

on the reference frame attached to the magnetic drop,
with m the magnetic dipole moment. This is a typical
Coulomb field. A dipole source would also be a
sufficient approximation, but we adopt the form (41)
since it approximates well conical magnetic spikes
designs, of a biomedical apparatus. It has to be
emphasized here that the non-uniformity of the applied
magnetic field, which is vital for the magnetophoretic
mobility of the ferrofluid drug, is higher only close to the
magnetic pole. This is a major technical problem that
has to be resolved, in order for the drug targeting to
remain essentially non-invasive. This limitation in bulk
vessels is not present on surface ones. Semi-invasive
techniques, like magnetic needles, provide always an
alternative solution. The fact that the magnetic point
source is oriented at an angle

o ¼ arcsin
z
d

� �
ð42Þ

with respect to the x-axis of our coordinate system (see
Fig. 2(b)) will be apparent from the following discus-
sion. The boundary condition (11) or (20) can also be
rewritten in vectorial form as

1TU ¼ pc #n; Ti ¼ ðtij þ tMij Þnj : ð43Þ

Substitution of (31)–(32) and (40)–(41) into (20) results
in an expression that contains not similar azimuthal and
polar components, which cannot be satisfied. In order to
overcome this obstacle we might replace the local
condition (20) by the more global one after integrating
(20) over the surface area S1; which written in
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dimensionless form, reads

1

Bm

¼
w
4S0

Z Z
S1

ðh2 þ h2nÞ dS; ð44Þ

where

Bm ¼
m0H

2
0R

g
ð45Þ

is the magnetic Bond number

h ¼
H

H0
; hn ¼

Hn

H0
; H0 ¼

m

d2
; S0 ¼ 2pR2; ð46Þ

and dS ¼ R2 sin y dy df: Due to the flow considered,
the mean blood flow velocity u0 does not enter into the
adhesion condition (44), either directly through
the viscous pressure (22)–(23), or indirectly through
the hydrodynamic pressure (34)–(35). Placing the
magnetic point source at z ¼ z > 0 ðoa0Þ (see Fig. 2(b))
results in a non-vanishing magnetic traction along the
flow direction, that may balance the drag due to the
blood flow. This traction balance can be expressed as an
additional global condition, that results from the
projection of Eq. (43) along the flow direction #ez and
the integration over the surface of the magnetic drop S1:Z Z

S1

ð1TzU� pc #nzÞ dS ¼ 0: ð49Þ

The above condition can be interpreted as a way to take
into account the deformation of the magnetic drop due
to the blood flow (see Fig. 2(a)), that it is not included in
the proposed solution. Provided that we can express this
angle o as a function of the drop deformation, the
model becomes also quantitative and further detailed
calculations of the flow need not be performed. In
dimensionless form Eq. (49) reads

Vm ¼
w

2b S0

Z Z
S1

½ðh2 � ð1þ 2wÞh2nÞ #nz þ 2wð1þ wÞÞhnhz� dS;

ð50Þ

where

Vm ¼
Z2u0

m0H2
0R

ð51Þ

is the dimensionless velocity

b ¼
gv � 1
gv þ 1

; gv ¼
Z2
Z1
; ð52Þ

and #nz ¼ cos y: Note that the capillary pressure does not
enter the condition (50), resulting in the dimensionless
velocity (51) with its limitations, due to the presence of
the magnetic field. Thus instead of one adhesion
condition (44), we now have two Eqs. (44) and (50)
and the dependence of blood flow velocity on the
applied magnetic field is parameterized as Bm ¼
BmðR=d; w;oÞ and Vm ¼ VmðR=d; w;o; gvÞ: The obtained
law Vm ¼ VmðBmÞ constitutes an upper bound to the
correct one, since an additional constraint, Eq. (50) is
introduced. Provided that a method can be devised that

computes a lower bound close to the upper bound, the
exact result may not need to be determined at all. Such a
method, which will not be examined here, is to apply
again the variational principle, that resulted to the field
equations, after removing a positive term from the
energy functional.

5. Results

The double integrals in Eqs. (44) and (50) can in some
cases be obtained in closed analytical form but since
they do not have any irregular behavior they can be
computed numerically with high accuracy. The b factor
in Eq. (50), is susceptible of corrections, after computing
a more accurate flow velocity field. The dependence of
dimensionless velocity Vm on the Bond number Bm is
very sensitive to parameter ðR=d; w;o; gvÞ; variations. We
are interested for realistic blood flows: a diluted
ferrofluid ðw51Þ; bulk ðR5dÞ; and surface
ð0oR=do1Þ vessels. The bulk vessels correspond mainly
to arteries, while the surface vessels to veins. Angle o
was varied in the interval 0popp=6:
Results are presented in Figs. 3(a) and (b) after

eliminating o; for varying viscosity ratio gv and
magnetic susceptibility w; respectively, and for two
values of the ratio R=d ¼ 0; 0:2: The curves intersect
the Bond number axis for o ¼ 0; as expected, since in
this limiting case the present model fails to estimate the
critical magnetic field for adhesion. In the case of bulk
vessels ðR=d51Þ the intersection with the Bm-axis
corresponds to Bm ¼ 3=w: For oXp=6 there is a
maximum in the Vm ¼ VmðBmÞ curves, but these

h ¼
1

½1þ sin2 oþ ðR=dÞ2 þ 2ðR=dÞ sin y cos f� 2ðR=dÞ sino sin y�
; ð47Þ

hn ¼
R=dþ sin y cos fþ sino cos y

½1þ sin2 oþ ðR=dÞ2 þ 2ðR=dÞ sin y cos f� 2ðR=dÞ sino sin y�3=2
ð48Þ

hz ¼
ðr=dÞ cos y� sino

½1þ sin2 oþ ðr=dÞ2 þ 2ðr=dÞ sin y cos f� 2ðr=dÞ sino sin y�3=2
ð53Þ
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calculations are not shown, since they lead to physically
unacceptable results. As expected (see Fig. 3(a)), higher
ferrofluid viscosity (smaller gv) results, for the same
magnetic field, to smaller blood flow velocities for
adhesion. Examination of Figs. 3(a) and (b) might
erroneously lead to the conclusion that for the same
blood velocity it is needed higher magnetic field for
smaller d (see Fig. 3(a)) and w (see Fig. 3(b)). This is not
valid since the velocity becomes dimensionless by using
the magnetic field, see Eq. (51) (the capillary pressure
term vanishes in Eq. (49)).
In order to compare our results with available

experimental data, we have also to compute and the
magnetic force on the surface of the ferrofluidic drop.
Due to the linearity of the magnetization-magnetic field
law M ¼ wH0; the dimensionless mean magnetic force
on the ferrofluid surface is given in terms of the
parameters of Eqs. (46) and (47) as

fm ¼
2w
S0

Z Z
S1

h5=2 dS ð54Þ

with

fm 	
Fmd
m0H2

0

: ð55Þ

Alhough the present model is valid for low Reynolds
number we summarize in Table 1, some results for bulk
(femoral artery) and surface (carotid artery) veins. They
correspond to a diluted magnetic drug with suscept-
ibility w ¼ 0:005; viscosity ratio gv ¼ 5=7; surface tension
gEgwater ¼ 25
 10

�3 N=m; magnetic drop radius R ¼
0:5 mm and blood viscosity Z2E3 Zplasma ¼ 6

10�3 N s=m2; in the expected range ZbloodEð1:58�
3:8Þ 
 10�3 N s=m2 come across the literature (Mokken
et al., 1996; Dintenfass, 1968). The computed blood flow

(a) (b)

Fig. 2. The deformation of the magnetic drop (a) and its interpretation in the model (b).

Fig. 3. Magnetic bond number Bm vs. Vm; for (a) w ¼ 0:5 and varying gv; (b) gv ¼ 0:5 and varying w: Solid lines correspond to R=d ¼ 0 and dashed to
R=d ¼ 0:2:

Table 1

Units (SI) Femoral

artery

ðR=dE0Þ

Carotid artery

ðR=d ¼ 0:2Þ

o Degrees 2.866 2.866

H0 T 0.195 0.234

u0 m/s 0.462 0.841

uexp m/s 0.05–0.35 0.1–0.6

Fm kN=m3 5.992 105.025

dH=dx T/m 7.747 107.824

M mT 0.975 1.170

d mm 50 2.5
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velocities for adhesion are higher than the experimen-
tally observed ones (Perret and Sloop, 2000), since the
model computes an upper bound. The magnetic field H0

and the magnetic force Fm are in the expected range
with similar experimental estimations, 0:1� 0:7 T and
3� 150 kN=m3; respectively (Ruuge and Rusetski,
1993). The magnetic field gradient dH=dx is calculated
at r ¼ ðR; 0; 0Þ and is out of the experimentally estimated
range 50� 100 T=m (Ruuge and Rusetski, 1993), due to
the simplified Coulomb magnetic spike considered. The
ferrofluid magnetization M is also out of the experi-
mentally estimated range 0:1� 0:5 mT; due to the
linearity of the constitutive law.
Finally, the magnetic force–viscosity ratio relation

ðfm ¼ fmðgvÞÞ derived from our model is compared with
experimental data from Fig. 6 of Ruuge and Rusetski
(1993). For this purpose we interchange the parameters
b and Vm in Eq. (50) and solve the resultant equation for
gv; which gives

gv ¼
1� k
1þ k

ð56Þ

with

k ¼
w

2VmS0

Z Z
S1

½ðh2 � ð1þ 2wÞh2nÞ #nz þ 2wð1þ wÞÞhnhz� dS:

ð57Þ

Results are presented in Fig. 4. The value gv ¼ 1
corresponds to o ¼ 0: As expected fm is an increasing
function of gv; since smaller viscosity of the ferrofluid,
Z1; requires larger magnetic force for adhesion. Again
we might erroneously conclude from Fig. 4 that for the
same viscosity ratio, increase in the magnetic force
requires increase in the blood velocity for adhesion. This
inconsistency is also attributed to the use of the
magnetic field, in order for the velocity to become
dimensionless. The experimental data (open circles)

correspond to a rate constant characterizing the washing
away of the drop of ferrofluid from the blood vessel wall
value, defined on Fig. 6 of Ruuge and Rusetski (1993),
of 0.2. The best fit to the experimental data (curve 4 of
Fig. 4) corresponds to R=d ¼ 0:2; d ¼ 2:5 mm; w ¼
0:005; H0 ¼ 0:177 T; Z2 ¼ 5:58
 10

�3 N s=m3 and
u0 ¼ 6:756 cm=s: Note that the experiments of Ruuge
and Rusetski (1993) performed for one phase flow
(ferrofluid), while our model assumes two phase flow
(blood–ferrofluid). Nevertheless, since our theory
has irregular behavior at o ¼ 0 ðgv ¼ 1Þ the above
assigned value for Z2 was considered efficient for fitting
purposes.

6. Conclusions

The general theory for treating magnetic drug
targeting, was developed. With minor corrections the
theory can also be applied when the carrier is not a
typical ferrofluid, but rather a lipid vessel (magnetolipo-
some). All necessary physical parameters like the
strength and the orientation of the magnetic field, the
magnetic composition of the drug, the blood composi-
tion and velocity are introduced in a model case. An
upper bound to the critical magnetic field for magnetic
drug capturing on blood vessel wall was derived.
Provided that the orientation angle o; of the applied
magnetic field will be related to the deformation and the
diffusion of the drug, the model might become also
quantitative. The difficulties on the design of proper
non-uniform driving magnetic fields were discussed. The
flexibility of the model permits the treatment of, either
bulk (arteries), or surface (veins) blood vessels. The
biocompatibility of the magnetic micro and nanobeads
is a major issue and is imminently related to the
possibility of biomineralization. Iron biomineralization
processes have been observed in a variety of living
organisms. Thus, it is expected that magnetite beads are
more biocompatible compared to the more toxic nickel
or cobalt oxides. It has to be addressed here, that at
the final stages of a clinical application of such a process
the presence of the magnetic drug in the targeting area
depends mainly to the extent of the stenosis. It is
expected though that such a process will not take place
for more than 10–15 min and more over a suction
instrumentation might be present, so biocompatibility is
preserved even for more toxic ferrofluidics. Finally, in a
long perspective, issues like the diffusion and dispersion
of the drop through the porous vessel wall and in the
blood stream, the pulsating character of the blood flow,
the elasticity of the blood vessel, the phagocytosis of the
magnetic drug (ferrofluid or magnetoliposome, in
orgin), or the safety standards for magnetic fields,
magnetic field gradients and the related exposure time
intervals should also be investigated.

Fig. 4. Dimensionless magnetic force fm vs. gv for varying Vm: Curves
labeled 1–5 correspond to Vm values 0.00023, 0.0003, 0.0005, 0.00126

and 0.01, respectively. The open circles are experimental data from

Fig. 6 of Ruuge and Rusetski (1993).
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