Radiolabeling of magnetic targeted carriers (MTC) with indium-111

Urs O. Häfelia,*, Junfeng Yub, Farhad Farudic, Yuhua Lid, Gilles Tapolskyd

aCleveland Clinic Foundation, Department of Radiation Oncology, 9500 Euclid Ave T28, Cleveland, OH, 44195, USA
bShanghai Institute of Nuclear Research, Chinese Academy of Sciences, 2019 Jialuo Road, Jiading, Shanghai 201800, P.R. China
cCleveland Clinic Foundation, Department of Cardiology, 9500 Euclid Ave F25, Cleveland, OH 44195, USA
dFeRx Inc., 12635 E. Montview Blvd.-Suite 300, Aurora, CO 80010, USA

Received 20 February 2003; received in revised form 20 April 2003; accepted 25 April 2003

Abstract

Magnetic targeted carriers (MTC) are magnetically susceptible microparticles that can be physically targeted to a specific site. MTC were radiolabeled with 111In using three different methods. Reaction parameters were investigated in order to optimize the final properties of the labeled MTC. The reaction parameters studied were chelation agent, chelation time, temperature, radiolabeling time, solvent, and molar ratios. A 97.7\% binding efficiency and plasma stability of 92.6\% over 7 days were achieved when 2-p-aminobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra-acetic acid (ABz-DOTA) was used as the chelating agent. A preliminary animal biodistribution study confirmed the binding stability. The labeling of the MTC with the diagnostic isotope 111In was undertaken to allow for quantitative imaging and dosimetry prior to therapy with 90Y radiolabeled MTC. © 2003 Elsevier Inc. All rights reserved.

Keywords: Magnetic targeting; Microspheres; Radiolabeling; Indium-111; Yttrium-90; Imaging

1. Introduction

Radioactive microparticles of different chemical compositions are currently used for diagnostic or therapeutic applications [1]. The main issue related to the use of therapeutic radiopharmaceuticals is the biodistribution following administration and the resulting doses delivered to nontargeted organs and tissues. In some instance, these doses lead to organ specific toxicities, which would limit the amount of activity that can be administered, resulting in suboptimal treatment effects and decreased therapeutic benefit.

Different targeting mechanisms have been developed to circumvent suboptimal biodistribution and deliver pharmaceutical agents specifically to diseased cells or cancerous tumors [2–6]. A chemical targeting approach was proposed to target specific cell surface antigens using peptides or antibodies [7,8]. However, the biochemical differences between normal and cancerous cells are typically more quantitative than qualitative, leading to a lack of specificity for this biochemical recognition and to toxic side effects. Since the early experiments, new generations of more selective antibodies and peptides have been developed but further improvements are still needed to focus them into the target area. While several diagnostic and therapeutic radiolabeled products based on antibody or peptide targeting mechanisms are in the late stages of clinical development, Zevalin® has been recently approved by the Food and Drug Administration (FDA) to treat certain forms of non-Hodgkin’s lymphoma [9]. This therapy is based on an 90Y (yttrium-90) radiolabeled antibody, ibritumomab tiuxetan, and includes an initial imaging step based on the same antibody radiolabeled with 111In (indium-111). The imaging step allows physicians to determine the actual patient pharmacokinetics, biodistribution, and organ dosimetry that could be anticipated with the therapeutic product. This step further permits for modification of the therapeutic dose when local toxicity is anticipated based on the imaging results [10].

Radioactive microspheres have been developed as another targeting approach to localize the activity to a specific organ. Recently, FDA approved microparticles containing 90Y which are used either alone for primary liver tumors (Theraspheres®; [11]) or in combination with systemic administration of 5-fluorouracil for the treatment of colorectal cancer liver metastases (SIR-Spheres®; [12]). The mechanism of localization of these large microparticles to the liver...
is based on embolization of the tumor vasculature after their
direct injection into the hepatic artery and is as such only of
limited cancer selectivity.

Magnetic microspheres have been proposed and devel-
oped to improve targeting efficiency and selectively deliver
pharmaceutical agents to cancerous cells, tumors, and or-
gans [13]. Although the primary application of radioactive
magnetic microspheres has been as a diagnostic tool to
investigate the body distribution of magnetic drugs, ther-
apeutic uses are currently being developed, especially for the
treatment of cancer [14].

Magnetic targeted carriers (MTC) are being developed
by FeRx Incorporated for the site specific delivery of phar-
maceutical agents. These microparticles are composed of
metallic iron and activated carbon and are prepared by a
high-energy milling process [15]. MTC range in size from
0.5 μm to 5 μm with an average diameter of approximately
1.5 μm. The synergy between these two components creates
a magnetically susceptible microparticle that may be tar-
gected and localized at a specific site. At the same time, this
microparticle is capable of carrying therapeutic quantities of
a wide range of pharmaceutical agents [15]. MTC can also
be labeled with therapeutic radioisotopes to treat chemore-
sistant tumors [16]. We recently labeled MTC with the
therapeutic radioisotope 188 Re (rhenium-188) [17]. The la-
beling efficiency was higher than 95% and the serum sta-
bility satisfactory. However, due to the limited availability
of 188 W/188 Re-generators [18–20], other commercially
available radionuclides were studied. Among these, the
β-emitter 90 Y and its diagnostic γ-emitting analog
111 In are preferred since they have been used for many years in
nuclear pharmacies to prepare diagnostic and therapeutic
radiopharmaceuticals.

The aim of this paper is to report the optimal conditions
for the radiolabeling of MTC with 111 In and test the in vivo
stability of the radiolabeled complex. Three labeling meth-
ods were used. First, 111 InCl3 was directly incubated with
the MTC. Second, the chelator 1,4,7,10-tetraazacyclodode-
cane-1,4,7,10-tetra-(acetic acid) (111 In-ABz-DOTA). In 111 In-DOTA,
the aminobenzyl-group is replaced by an H-atom; B. 111 In oxyquinoline (111 In-oxine).

The chelation of 111 In (PerkinElmer Life Sciences, Bos-
ton, MA), was performed using 1,4,7,10-tetraazacyclodode-
cane-1,4,7,10-tetra-(acetic acid) (DOTA), 2-p-aminoben-
zyl-DOTA (ABz-DOTA) (Macrocyclics, Dallas, TX)
(Figure 1A), or oxine (= 8-hydroxyquinoline; Sigma-Al-
drich, St. Louis, MO) (Figure 1B).

Several parameters for the chelation reaction were inves-
tigated. The reaction was performed by incubating different
molar ratios (MRs) of DOTA or ABz-DOTA to 111 In (from
50:1 to 105:1) in 0.2 M or 0.02 M ammonium acetate buffer
at pH 6 for 0 to 40 minutes at temperatures from 22 to 90 °C
in an Eppendorf Thermomixer (Brinkmann Instruments,
Inc., Germany) at 1400 rpm. The chelation ef-
fi
fi
ciency was
investigated as a function of indium concentration ranging
from 1 to 5 μM. When using oxine as a chelator, 10 μCi of
111 In in 200 μl of 0.2 M or 0.02 M ammonium acetate
buffer at pH 6 was incubated with 200 μl of a 0.1 M oxine
solution in ethanol for 15 min at 50 °C. 111 In-oxine was then
extracted twice with 200 μl CH2Cl2.

Chelation efficiencies of 111 In-DOTA and 111 In-ABz-
DOTA were determined using thin layer chromatography
(TLC) using silica precoated strips (Polygram Sil G/UV254)
as the solid phase and a mixture of 80% NH4Ac 10% and
20% methanol as the mobile phase (Table 1). Free 111 In3+
 migrates with the solvent front (RF 0.7–1.0) and 111 In-MTC
or 111 In colloids stay at the origin (RF 0). The RF of 111 In-
DOTA or 111 In-ABz-DOTA is 0.2–0.5. This method was
found to be optimal for use with a radiation scanner (Figure 2). Other TLC methods investigated are also described in Table 1 and might be useful if the TLCs were to be cut and analyzed in a γ-counter (Figure 3).

The TLC method for the analysis of the chelation efficiency of 111 In-oxine consisted of Tec-Control strips (Biodex Medical Systems) as the stationary phase and methanol as the mobile phase. In this system, 111 In-oxine migrates with the solvent front (Rf \(\approx \) 0.8–1.0) while free 111 In stays at the origin (Rf = 0).

2.2. Adsorption of 111 In-compounds to MTC and stability measurement

The direct adsorption of the positively charged 111 In\(^{3+}\) on the MTC was investigated first. Twenty milligram of MTC were incubated for 30 min at 37 °C with 100 μl of 111 InCl\(_3\) (≈100 μCi) in 0.2 M NH\(_4\) Ac buffer at pH 6 in an Eppendorf Thermomixer at 1400 rpm. The radiolabeled MTC were then washed twice with PBS pH 7.4.

The 111 In-labeled DOTA-complex was adsorbed onto the MTC after assessment of the chelation efficiency. Typically, 20 mg of MTC were incubated with 100 to 200 μl of the chelated radiolabeled 111 In-oxine, 100 μl of the methylene chloride solution was transferred to 20 mg of MTC and incubated at 60°C for 30 min until complete evaporation of the solvent.

The binding efficiency, or amount of activity effectively adsorbed onto the MTC microparticles for the two methods described above was then determined by bringing the vol-

Table 1

<table>
<thead>
<tr>
<th>Stationary phase</th>
<th>Solvent</th>
<th>Rf Values</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free 111 In(^{3+})</td>
<td>111 In-DOTA</td>
<td>111 In-ABz-DOTA</td>
<td>3-5 min development; 111 In-MTC with Rf 0</td>
</tr>
<tr>
<td>Sil G/UV(_{254})*</td>
<td>10% NH(_4) Ac (pH 4): methanol = 8:2</td>
<td>0.7–1.0</td>
<td>0.2–0.5</td>
</tr>
<tr>
<td>Whatman 3 mm(^1)</td>
<td>Methanol</td>
<td>0–0.1</td>
<td>0.1–0.2</td>
</tr>
<tr>
<td>10% NH(_4) Ac (pH 4)</td>
<td>0.8–1</td>
<td>Overlap</td>
<td></td>
</tr>
<tr>
<td>Tec-Strip(^2)</td>
<td>10% NH(_4) Ac (pH 4): methanol = 1:1</td>
<td>0.8–1</td>
<td>0.6–0.8</td>
</tr>
<tr>
<td>Ethanol or isopropanol</td>
<td>0</td>
<td>0–0.6</td>
<td>0–0.6</td>
</tr>
<tr>
<td>Methanol: HAc = 95.5 or 99:1</td>
<td>1</td>
<td>0.0–1.0</td>
<td>One peak</td>
</tr>
<tr>
<td>10% NH(_4) Ac (pH 4)</td>
<td>0.8–1</td>
<td>0.6–0.8</td>
<td>Overlap</td>
</tr>
<tr>
<td>Whatman 17(^4)</td>
<td>Water</td>
<td>0.5–0.7</td>
<td>0.6–0.8</td>
</tr>
<tr>
<td>Ethanol or isopropanol</td>
<td>0</td>
<td>0.6–0.8</td>
<td></td>
</tr>
<tr>
<td>Methanol: HAc = 95.5 or 99:1</td>
<td>1</td>
<td>0.0–1.0</td>
<td></td>
</tr>
<tr>
<td>Methanol: HAc = 95.5 or 99:1</td>
<td>0</td>
<td>0.6–0.8</td>
<td></td>
</tr>
</tbody>
</table>

* Polygram\(^8\) Sil G/UV\(_{254}\), pre-coated sheets.
\(^1\) Whatman 3 mm chromatography paper, Cat No. 3030917.
\(^2\) Tec-Control\(^TM\), black strips. #151-005 (Biodex Medical Systems).
\(^3\) Gelman Sciences, silica gel impregnated glass fiber sheets, Instant Thin Layer Chromatography, Prod. 61886.
\(^4\) Whatman 17 chromatography paper, Lot No. 3017915.
volume of the 111In-labeled MTC suspension up to 1 ml with PBS (pH 7.4) and measuring the total radioactivity in a RadCal dose calibrator using a setting for 111In with a calibration factor of 1141 (Radcal Corp., Monrovia, CA). After centrifugation, the supernatant was removed and 1 ml fresh PBS added (wash 1). The suspension was centrifuged and the supernatant removed, then 1.5 ml of human plasma or viscous vehicle was added and the total activity counted (radioactivity after wash 2).

MTC binding efficiency [%] = \frac{\text{Radioactivity after 2 washes}}{\text{Total radioactivity before washes}} \times 100\%

The in vitro stability of the adsorption of free or chelated indium onto the MTC was investigated in a viscous aqueous solution of 0.5% sodium carboxymethylcellulose and 10% mannitol which is used for the in vivo administration of the MTC, and also in human plasma at 37°C. At each time point (1 hour, 1, 3, and 7 days), the sample with the 111In-labeled MTC was removed from the 37°C water bath and the total radioactivity measured. The vial was then centrifuged and two 500 µl aliquots of supernatant (from a total of 1500 µl) were removed and transferred to clean vials. Activities of the two vials of supernatant were measured using a γ-counter (HP Minaxi Autogamma 5000 counter). The volume of plasma taken from the samples was replaced by adding 1 ml of fresh plasma to the sample vial. Stability measurements as a function of time were made by calculating the ratio of the activity in solution (released from the MTC) to the total activity measured for the suspension:

MTC bound [%] = 1 - \frac{\text{Average radioactivity of 500 µl supernatant} \times 3}{\text{Total radioactivity}} \times 100\%

2.3. Animal experiment

We evaluated the in vivo stability of the bound activity and the biodistribution of radioactivity in Wistar rats following intramuscular administration. The experiment was performed according to the guidelines for the Care and Use of Laboratory Animals published by NIH, using a protocol approved by the Cleveland Clinic Foundation’s animal review committee. Twelve female Wistar rats (200-250 g) were divided into 2 groups. The radioactive 111In-ABz-DOTA was prepared by diluting 5 µl of 111In in 0.05 M HCl (2 mCi) with 170 µl of 0.02 M ammonium acetate buffer pH 6 and 30 µl of 1 mM ABz-DOTA, and then incubating for 30 minutes at 90°C. The labeling efficiency was 97.4%. For the control group, 100 µl of the solution was diluted with 1.5 ml of the viscous injection solution. For the experimental group MTC were radiolabeled with 111In-ABz-DOTA by adding 100 µl of the 111In-ABz-DOTA solution to 16 mg of MTC, incubating under stirring for 30 minutes at 90°C, and then diluting with 1.5 ml of the viscous injection solution. All animals received 200 µl of the 111In-labeled compound (70 µCi) injected into the left thigh muscle. Two rats of each group were sacrificed 3, 24, and 72 hours after injection. The total radioactivity for each animal was measured in the Radcal dose calibrator before dissection, and the total activity remaining in the carcass after dissection was also measured. Blood samples and organs were weighed and the radioactivity measured in a γ-counter. The organ activity in percent of total injected activity (%ID) was calculated by dividing the organ radioactivity by the sum of all organ radioactivity plus the radioactivity left in the carcass. The organ/blood ratio was calculated by dividing each organ’s radioactivity concentration (Bq/mg) by the radioactivity concentration measured in blood at each time point.

3. Results and discussion

The main characteristics of radiolabeled MTC we wanted to optimize were the binding efficiency, as determined by the effectiveness of the adsorption of the radioisotope onto the MTC, and the stability of this adsorption over time. Studies were performed in order to identify the parameters influencing these properties and find the conditions for optimal results. Similarly, the parameters of the chelation step were studied in order to reproducibly obtain the highest possible yield.

3.1. Preparation of the chelated 111In-compounds

Radioactive complexes are often made by chelation, a reversible process with defined association constants (K_m) [21]. Reaction parameters can influence the equilibrium and thus the formation and stability of the complex. It has been shown by several investigators that the ratio of chelating species to radioisotope needs to be carefully controlled for optimal binding and stability [22,23]. In our studies, the mole ratio (MR) is defined as:

Mole ratio (MR) = \frac{\text{Mole of chelator}}{\text{Mole of indium (In)}}

If the ratio is too low, leading to an excess of indium, the chelation will be incomplete, allowing unchelated indium to bind to the surface of vials and containers or react with contaminants, thus possibly leading to a large loss of radioactivity. If the ratio is too high, resulting in an excess of chelator, it might affect the adsorption properties onto the MTC, as well as the long-term stability of the chelated indium adsorbed onto the MTC. In order to have the highest binding efficiency and optimal stability, we investigated different MRs of the chelators, DOTA and ABz-DOTA, to indium. These compounds were chosen because the planar
ligand DOTA [24] shows good biodistribution and toxicity properties [25–27] and is reported to be the most stable chelator of 90Y for clinical applications [28,29]. The additional amino-benzyl group in ABz-DOTA may alter the kinetics, or the extent and stability of adsorption to the MTC, and therefore could be beneficial for keeping the radioactive compound adsorbed onto the MTC for extended periods of time. The chelation reaction does not seem to be influenced by the molarity of the buffer. Ammonium acetate buffers of 0.2 M or 0.02 M gave identical chelation efficiencies of chelated 111In (data not shown). At the low indium concentration of 0.01 μM, high MRs of about 1000:1 are necessary to reach high chelation efficiency (Figure 4). Lengthening the incubation times to more than 20 minutes did not improve the chelation efficiencies (Figure 5). To investigate the optimal indium concentration for reliable and reproducible chelation, we increased the indium concentration up to 5 μM by adding the non-radioactive carrier indium trichloride (Figure 6). At an indium concentration of 3 μM, an MR of 50:1 for DOTA was needed to reach a chelation efficiency of 95.1 ± 2.5% (n = 5) (Figure 6). For ABz-DOTA at an indium concentration of 3 μM and MR of 50:1, a chelation efficiency of 96.9% ± 2.2% was measured (n = 5). Further increasing the indium concentrations to the maximum tested of 4 or 5 μM, or increasing the MR, did not improve the chelation efficiency. The optimal indium concentration determined for both DOTA and ABz-DOTA was 3 μM in the ammonium acetate buffer. The effect of the temperature on the chelation efficiency was investigated at 0.01 μM indium with a MR of 1000:1, using a heating time of 20 min. The maximum tested temperature of 90 °C showed the highest chelation efficiency (Figure 7). For this reason, and because longer incubation times did not increase the chelation efficiency (Figure 5), we performed our chelation step at 90 °C for 30 min.

3.2. Direct binding of 111In onto MTC

The direct binding of 111In onto the MTC led to a low binding efficiency of 83.7 ± 1.2%. Stability tests showed that only 61.5 ± 4.0% of the radioactivity initially bound to the MTC remained onto the MTC after a week in human plasma at 37 °C (Figure 8). Directly adsorbing 111In to MTC thus does not produce a stable product and does not appear appropriate for potential in vivo applications.

3.3. Adsorption and stability of chelated 111In-compounds to MTC

Optimal reaction parameters for the adsorption of 111In-ABz-DOTA onto MTC were reached with a 30 min incubation time at 90 °C. The binding efficiency was 97.7 ± 0.9%. For this binding step with the ABz-DOTA chelator, neither the incubation volume nor the temperature were critical. Incubating the MTC in 100 and 200 μl at 50 °C resulted in a binding efficiency of 94.7 ± 0.1% and 93.7 ±
0.4%, respectively. Changing the temperature between 37°C and 90°C, for a 100 μl volume, only changed the binding efficiency by a few percent as seen in Figure 9.

The chemical nature of the chelator also influenced adsorption and stability of the radioactive complex significantly. When 111In-DOTA was adsorbed onto the MTC in conditions comparable to that of 111In-ABz-DOTA, the binding efficiency was only 84.9 ± 2.6%, compared to 96.9% ± 2.2% for 111In-ABz-DOTA. In addition, the binding stability in plasma showed that MTC radiolabeled with 111In-DOTA were not as stable as MTC radiolabeled with 111In-ABz-DOTA as the activity still bound to the particles after 7 days at 37°C was approximately 80% and 95%, respectively (Figure 8).

The lipophilic 111In-oxine complex forms quickly and completely with a chelation efficiency of 99.5% ± 0.7. Due to the aromatic rings, the binding efficiency of 111In-oxine compound onto the MTC was excellent as expected; after two PBS washes, the activity bound was 100% ± 2.5% (n=3). However, the radioactivity was slowly released from the MTC, with only 64.3 ± 0.8% of the radioactivity left on the MTC after 7 days in plasma (Figure 8). The slow release of the activity is believed to be linked to the chemical instability of the In-oxine complex [30] and not to the release of the intact complex, resulting in free 111In as detected by TLC (not shown).

3.4. Biodistribution of 111In-ABz-DOTA and 111In-ABz-DOTA-MTC in rats

The in vivo stability of the radioactive MTC compounds was assessed by comparing the biodistribution of the chelated compounds alone and bound to the MTC. The choice of the intramuscular injection was made to more easily differentiate between activity in the form of the chelated

Fig. 6. Effect of indium concentration and MR on chelation efficiency (n=1).

Fig. 7. Effect of temperature on chelation efficiency at a constant incubation time of 20 min (n=1).

Fig. 8. Binding stability of 111In-MTC, 111In-DOTA-MTC, 111In-ABz-DOTA-MTC, and 111In-oxine in human plasma at 37 °C (n=3).

Fig. 9. Effect of temperature on MTC binding efficiency using 111In-ABz-DOTA (n=3).
The biodistribution of 111In-ABz-DOTA and 111In-ABz-DOTA-MTC following intramuscular injection in rat thighs differs significantly (Table 2). For 111In-ABz-DOTA, the radioactivity quickly redistributes to the whole body. After 3 hours, more than 75% of the total injected activity had already cleared the system by urinary excretion. From the activity left in the animal’s body at that time point, less than 4% of the radioactivity was found at the injection site, clearing at about the same rate as from the other organs thereafter. The small amount of radioactivity still found after 3 days was concentrated in the blood and the excreting organs (liver, kidney and small intestine).

In contrast, when the chelated complex was bound onto the MTC, no activity redistribution took place and approximately 93–94% of the activity was found at the site of injection at all time points measured in the study. In addition, the radioactivity measured in blood was less than 1% of the injected activity 3 hours after administration and decreased over the 3 days of the study. This indicates that only a small amount of the 111In-compound is washed off the MTC under these conditions. Thus, the in vivo binding stability of the radiolabeled 111In-ABz-DOTA-MTC seems satisfactory and correlates well with the in vitro results.

The significant differences between the biodistribution of the chelated indium and MTC-bound chelated indium are more apparent when comparing the organ-to-blood activities for each time point (Table 3). This comparison clearly shows that the complex 111In-ABz-DOTA is rapidly cleared from the injection site through the blood supply. The only organs showing high levels of radioactivity are the excreting organs kidney, liver and spleen. The thigh-muscle/blood ratio was close to 5:1 (the thigh was the injection site) three hours after the injection of 111In-ABz-DOTA while this ratio was on the order of 467:1 for 111In-ABz-DOTA-MTC. Differences were even more pronounced over time, increasing from 1347:1 after 1 day to 3297:1 after 3 days, suggesting no redistribution from the site of injection.

4. Conclusions

Optimal conditions for the preparation of MTC radiolabeling with indium complexes were determined in this study. Of the 3 different methods investigated, the absorption of the hydrophilic radiolabeled complex 111In-ABz-DOTA lead to the best labeling and stability results. The procedure to radiolabel MTC with 111In is a simple two step procedure: chelation of the indium with ABz-DOTA followed by binding of the chelated indium to the MTC. These steps can be readily performed in a radiopharmacy. Yields for each step are excellent with chelation efficiencies on the order of 96–98% and binding efficiencies on the order of 95–97%. The in vitro binding stability of the complex 111In-ABz-DOTA-MTC is satisfactory in plasma with approximately 93% of the radioactive complex still bound to

Table 2
Biodistribution of free and MTC-bound 111In-ABz-DOTA in rats after intramuscular injection into the left thigh expressed as a percentage of the total injection activity (%ID) ± standard error (n = 2). It was calculated from the radioactivity concentration of each organ multiplied by the total organ weight and divided by the total activity in the rat at the time of sacrifice.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Time point after injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 hours</td>
</tr>
<tr>
<td></td>
<td>111In-ABz-DOTA</td>
</tr>
<tr>
<td>Blood</td>
<td>9.64 ± 1.91</td>
</tr>
<tr>
<td>Brain</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td>Thyroids</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>Heart</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>Lung</td>
<td>0.56 ± 0.13</td>
</tr>
<tr>
<td>Small intestine</td>
<td>3.97 ± 0.51</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.37 ± 0.07</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.17 ± 0.05</td>
</tr>
<tr>
<td>L. Kidney</td>
<td>3.16 ± 1.02</td>
</tr>
<tr>
<td>R. Kidney</td>
<td>3.80 ± 1.61</td>
</tr>
<tr>
<td>Liver</td>
<td>6.04 ± 1.10</td>
</tr>
<tr>
<td>L. Femur</td>
<td>0.11 ± 0.07</td>
</tr>
<tr>
<td>R. Femur</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.15 ± 0.03</td>
</tr>
<tr>
<td>L. Thigh (Inj.)</td>
<td>3.71 ± 1.57</td>
</tr>
<tr>
<td>R. Thigh</td>
<td>0.10 ± 0.07</td>
</tr>
<tr>
<td>Pituitary gland</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Carcass**</td>
<td>67.83 ± 8.05</td>
</tr>
</tbody>
</table>

* Data of only one animal was used because of sample contamination. **Including 60% of blood.
the MTC after 7 days. The in vivo binding stability was confirmed following intramuscular injection. When comparing the chelated indium alone and the radiolabeled MTC, there was no release of the chelated indium from the MTC and no redistribution of the 111In-ABz-DOTA-MTC micro particles as approximately 93% of the injected activity remains at the injection site 3 days after administration. These results indicate that the imaging characteristics of indium labeled MTC warrants further investigation as a diagnostic assessment tool prior to a therapeutic treatment based on 90Y labeled MTC to determine the intra-patient biodistribution and organ dosimetry.

Acknowledgments

We thank FeRx Inc. (San Diego, CA) for supporting this work.

References

