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Abstract
We investigate planar periodically magnetized structures for use in targeting
or controlling the delivery of therapeutic agents attached to small magnetic
particles, and derive simple analytic expressions for the relevant magnetostatic
forces. We show that improved particle trapping or confinement characteristics
are possible relative to those that can be obtained with more conventional
(i.e. uniformly magnetized) structures. These improvements include forces
that are larger at close range (for equivalent magnetization densities) and that
are both unidirectional and uniform over arbitrarily large areas parallel to the
magnet surface. Expressions for the magnetostatic forces exerted on point-like
magnetic particles in the vicinity of long rods (with circular and ellipsoidal cross
sections) uniformly magnetized perpendicular to their axes are summarized in
an appendix.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The concept of a ‘magnetic bandage’ for targeting or controlling the delivery of therapeutic
agents has considerable intuitive appeal [1]. A magnet, or an array of magnets—comprising
the bandage—is placed near a lesion or tumour, and small highly permeable (i.e. magnetic)
particles encapsulated with a protective coating and a drug or other agent are injected into the
bloodstream. Magnetostatic forces acting on these particles cause them to become trapped
against the walls of blood vessels in the region of interest (ROI). Next, the intended treatment
is performed. This could involve anything ranging from the slow release of a chemotherapeutic
drug or irradiation of tissues by beta emitters (contained within the particles) to localized
hyperthermia induced by applying an alternating magnetic field. When the holding magnets
are finally removed the particles either redistribute into the blood supply (and are eventually
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cleared by the reticuloendothelial system) or remain within the ROI (as is the case when
extravasation takes place). In both situations the residual toxicity is very low; magnetic
particles (and in particular magnetite (Fe3O4) which is widely used for magnetic targeting
applications) biodegrade (often after uptake by macrophages) and are recycled by the body.
Within six weeks, the iron appears in the red blood cells [2]. Encouraging results from practical
realizations of this drug targeting concept (involving both animal models [3, 4] and clinical
trials with humans [5]) have helped to motivate a growing interest in developing, refining, and
understanding [6–9] applications of magnetic nanoparticles to biomedicine [10].

A natural (but perhaps somewhat ill-defined) question that one can ask is ‘How should
an external magnet or magnet array be designed and positioned so as to optimize its trapping
efficiency?’ Clearly, some combination of magnetic fields and field gradients that give rise to
large magnetostatic forces in the ROI is required. At the same time, the magnetic properties and
size of the injected particles should be matched to the imposed fields and hydrodynamic forces
so that the particles tend to concentrate in the desired location. A third consideration pertains
to the manner in which the region of interest is perfused; this dictates both the injection site
and to some extent the direction in which the imposed magnetostatic forces should act. One
can certainly imagine a general scenario in which a suspension of particles with a range of
properties would be injected so as to achieve a uniform or otherwise ‘tailored’ distribution (and
hence activity) of the therapeutic agent in the presence of the magnetic bandage.

Here we investigate one aspect of the magnetic drug targeting problem: the design
of magnetized structures for exerting large and—within physical constraints imposed by
Maxwell’s equations—spatially uniform magnetostatic forces. In particular, we examine a
class of planar structures characterized by the fact that magnetic flux can be made to emanate
from only one of the two faces through an appropriate modulation of the magnetization
vector [11, 12]. Many characteristics of these ‘one-sided flux’ structures are known in
the context of devices as diverse as rubberized ‘refrigerator’ magnets, magnetic recording
tape, undulators for the production of synchrotron radiation, and passive magnetic levitation
systems [13–15], but to the best of our knowledge they have not been considered previously
for magnetic trapping applications. Our analysis indicates that one-sided flux structures offer
significant advantages over more conventional magnet designs in which the magnetization
within the structure tends to be uniform.

Our treatment of this problem is by no means exhaustive. We ignore material properties
and focus solely on geometric considerations. Moreover, no attempt is made to optimize
magnet design for compatibility with various parts of the human body or to deal with finite
size effects. Instead, we restrict our discussion to planar structures that are infinite in extent so
as to be able to emphasize conceptual aspects of the design problem.

2. General considerations

A point-like particle with magnetic moment m in a non-uniform but static magnetic induction
B is subject to a force F = ∇ (m · B). It also experiences a torque τ = m × B which,
when combined with the dissipative influence of hydrodynamic forces, tends to bring m into
alignment with B. If the magnetic susceptibility of the medium in which the particle is
immersed is both small (as in the case for blood and biological tissues) and uniform3, the
force F can be written F = μ0∇ (m · H) or

F = −μ0∇ (m · ∇φm) , (1)

3 Caution is required in the vicinity of interfaces between media. Differences in magnetic susceptibility can lead to
situations in which this approximation is not valid.
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where μ0 is the permeability of free space, H = −∇φm is the magnetic field associated with
B, and φm is the corresponding magnetic scalar potential.

To proceed further one needs to consider the magnetic response of the particle to changes
in applied field. For the sake of clarity we simply distinguish between two limiting cases: that
in which |m| increases in direct proportion to |H| and that in which |m| is independent of |H|.
We refer to these idealizations as unsaturated and saturated material responses, respectively,
and note that intermediate situations are readily described through simple extensions of the
arguments presented below. In the unsaturated case, which corresponds to the particle having
a linear induced magnetic dipole moment (and is thus relevant to soft ferromagnetic and
superparamagnetic materials in weak magnetic fields), m can be written in the form

m = βH, (2)

where β is a constant4. This leads to

Fun = μ0β∇ |∇φm|2 . (3)

In the saturated case, which corresponds to the particle having an intrinsic magnetic dipole
moment ms (and is thus is relevant to single domain or permanently magnetized particles),

m = msH/H (4)

and thus

Fsat = μ0ms∇ |∇φm | . (5)

From a purely geometric perspective, the issue of trapping efficiency amounts to choosing
the distribution of magnetic sources (magnetized materials and/or current distributions) that
give rise to φm (or H) in order to maximize (or otherwise optimize) the force exerted on point-
like magnetic particles introduced into the bloodstream. Clearly φm and hence F vary over
a length scale determined by characteristic dimensions of its source, limiting the extent to
which fields penetrate the body. This rule of thumb has previously motivated the selection
and placement of uniformly magnetized blocks of material (typically rare-earth permanent
magnets) with dimensions of order several centimetres so as to produce large fields in the
vicinity of tumours during clinical trials [5]. Our presentation here is motivated by the simple
observation that larger and (potentially more uniform) magnetostatic forces (cf equations (3)
and (5)) can be generated through the judicious use of non-uniform magnetization distributions
as sources of φm (or H).

Two points are worth noting before proceeding. The first is related to the fact that one
would like to exert large magnetostatic forces on point-like magnetic particles located within a
well-defined ROI that is in general situated some distance from the surface of the body. This is
not possible without also exerting large magnetostatic forces on particles located between the
ROI and the external field source, a direct consequence of Earnshaw’s Theorem [16]. That is,
the nature of φm (the fact that it satisfies Laplace’s equation in free space) is such that ∇ ·F = 0
and thus local maxima in |F| can only exist adjacent to the source5. This implies that a careful
choice of injection site and knowledge of the manner in which the ROI is perfused is necessary
if magnetic particles are to be kept from entering and being trapped within the vasculature
between the ROI and the source.

The second point is related to the distribution of magnetization that gives rise to φm (or H),
and the manner in which that distribution influences the field and its gradient at large distances.

4 In general β depends on geometry as well as the magnetic susceptibility of the particle and its surroundings. For
example, β = 3χV/2 for a sphere of volume V and susceptibility χ � 1 situated in free space and exposed to a
uniform magnetic field. The arguments presented in this paper do not depend on such details.
5 This argument does not apply to particles with a diamagnetic response. See [7] for an illustration of this principle
applied to two-dimensional magnetic fields.
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The magnetic scalar potential for an arbitrary localized distribution of magnetization M (r) may
be expressed as [17]

φm (r) = −∇ ·
∫

V

M
(
r′)

|r − r′| dV ′. (6)

Far away from the volume V in which M is finite,

φm (r) ≈ −∇
(

1

r

)
·
∫

V
M

(
r′) dV ′ = m∗ · r

r 3
. (7)

That is, φm asymptotically approaches the scalar potential of a magnetic dipole m∗ =∫
M

(
r′) dV ′. An important distinction can be made between situations in which m∗ = 0

and m∗ �= 0. If the distribution of M is finite in two dimensions and uniform in the third, then
at large enough distances φm (and hence H, Fun, and Fsat) can always be expressed in terms
of the magnetic scalar potential for an infinitely long (and appropriately magnetized) cylinder.
The relevant equations for the situation in which M is perpendicular to the symmetry axis are
summarized in the appendix. On the other hand, if m∗ = 0 then φm (and hence H, Fun, and
Fsat) will tend to zero more rapidly. Examples of both types of behaviour are presented in the
discussion that follows.

3. Planar periodically magnetized structures

Consider an infinite slab of hard ferromagnetic material with thickness 2b magnetized such that
M = My (x) ĵ , where ĵ is a unit vector normal to the surface and

My (x) = M0 cos (kx) (8)

as illustrated in figure 1. The magnetic scalar potential associated with this distribution of
magnetization is

φm (x, y) = M0

k
cos (kx) sinh (kb) exp (−ky) (9)

for y � b [18]. The corresponding magnetic field H = Hxî + Hy ĵ has components

Hx = k tan (kx) φm (x, y) Hy = kφm (x, y) (10)

and spatial derivatives

∂ Hx

∂x
= k2φm (x, y)

∂ Hy

∂y
= −k2φm (x, y)

∂ Hx

∂y
= ∂ Hy

∂x
= −k2 tan (kx) φm (x, y) .

(11)

The magnetostatic forces exerted on point-like magnetic particles located in the vicinity of the
slab are thus

Fun = −μ0βM2
0 k sinh2 (kb) exp (−2ky) ĵ (12)

and

Fsat = −μ0ms M0k sinh (kb) exp (−ky) ĵ (13)

for the unsaturated (cf equation (3)) and saturated (cf equation (5)) limits, respectively.
Several observations relevant to equations (12) and (13) are worth noting. First, the

geometry pictured in figure 1 results in magnetostatic forces that are (a) independent of the
transverse coordinate x and (b) solely directed normal to the magnetized slab (i.e. Fx =
Fz = 0). Second, it is clear that a thick slab always exerts a larger force than a thin
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Figure 1. An infinite slab of hard ferromagnetic material magnetized such that M is normal to
the surface and varies as cos(2π x/λ) along one of the transverse spatial coordinates. The force
exerted on a small magnetic body placed anywhere above (or below) this slab only depends on the
y coordinate and is always directed normal the slab.

slab; this point is discussed further in the following section. Third, the magnetostatic force
decreases exponentially as a function of the coordinate y. The characteristic length scale for
this attenuation is governed by the spatial periodicity of M, with long wavelength variations
(small k = 2π/λ) resulting in better penetration into the surrounding media at the expense of
reduced maximum forces. For a given slab thickness 2b the maximum force at elevation y > b
is obtained for the value of k that satisfies

α

2
− ky + kb

tanh kb
= 0, (14)

where α = 1 for unsaturated magnetic particles and α = 2 for saturated magnetic particles. In
the limit kb � 1, these maxima exist for real values of k satisfying

k ′
un = 3

2b

(
y

b
−

√
y2

b2
− 2

)
and k ′

sat = 3

2b

(
y

b
−

√
y2

b2
− 24

9

)
(15)

which reduce to

k ′
un = 3

2y
and k ′

sat = 2

y
(16)
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for large values of y/b. Finally we note that, for a given geometry, the characteristic length
scale over which magnetostatic forces exerted on permanently magnetized (saturated) particles
are attenuated is double that for unsaturated particles.

4. Flux enhancement

The magnitude of the force that can be exerted by the magnetization distribution pictured in
figure 1 increases in proportion to sinh (kb) or sinh2 (kb), depending on whether the dipole
moment of the particle in question is permanent or induced. As the thickness of the magnetized
slab increases, so does the magnetic flux emanating from any point along either the top or
bottom surface. One way of improving the trapping efficiency of this ‘magnetic bandage’ is
to force all of the flux to emanate from only one of the two surfaces [11, 13]. This can be
accomplished by imposing an in-plane magnetization component that is in spatial quadrature
with the transverse component. That is, if the magnetization of the slab described in the
previous section becomes

M = −M0 sin (kx) î + M0 cos (kx) ĵ (17)

as illustrated in figure 2, the magnetic flux above the slab is doubled and that below the slab
becomes identically zero. Changing the sign of the in-plane (i.e. î ) component of M causes the
flux to emanate from the lower surface. This is nothing other than the principle underlying the
design of rubberized ‘refrigerator’ magnets. As far as our analysis is concerned, the magnetic
scalar potential corresponding to equation (17) is simply double that given by equation (9) [18].
This in turn implies that the magnetostatic forces are four times as large as that given by
equation (12) in the unsaturated case and double that given by equation (13) in the saturated
case. That is

Fun = −4μ0βM2
0 k sinh2 (kb) exp (−2ky) ĵ (18)

and

Fsat = −2μ0ms M0k sinh (kb) exp (−ky) ĵ (19)

for the magnetized slab pictured in figure 2.
Clearly the development of magnetic bandages with continuously varying magnetization

vectors is not a trivial task. On the other hand, an appropriate arrangement of discrete magnets
aligned so as to mimic the magnetization distribution required by equation (17) is a relatively
simple task. Such arrays are often referred to as Halbach arrays [12], and they have been used
in applications ranging from undulators for particle accelerators to magnetic levitation devices.
A few examples are pictured in figure 3.

5. Figure of merit and comparison of magnetized structures

The relative trapping efficiency of various magnetized structures can be compared by
introducing appropriate figures of merit. A convenient dimensionless quantity relevant to
trapping particles in the unsaturated (linear induced dipole moment) limit is

Fun L

μ0βM2
0

≡ L∇ |∇φm|2
M2

0

, (20)

where L is a characteristic dimension of the magnet. An analogous parameter for particles in
the saturated (permanent dipole moment) limit is

Fsat L

μ0ms M0
≡ L∇ |∇φm|

M0
. (21)
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Figure 2. The magnetic scalar potential above the infinite magnetized slab shown in figure 1 is
doubled when an in-plane magnetization component is superimposed in quadrature to the normal
component (cf equation (17)). At the same time, the magnetic flux emanating from the lower surface
is eliminated. Note that the magnitude of the magnetization vector is uniform throughout the slab
in this configuration; only its direction changes.

Both of these quantities parameterize the contribution of geometric factors (i.e. the distribution
of magnetization within the source—or relative to the ROI) to the force that can be exerted on
point-like magnetic particles.

Figure 4 summarizes the geometry of six magnetized structures, each of which is assumed
to be infinitely long in the third dimension. Four of these structures are uniformly magnetized
throughout their volume, and are intended as being representative of ‘conventional’ magnets.
The other two have been designed as one-sided flux structures. Our selection of conventional
magnet geometries is motivated by the fact that analytic expressions for the forces that
would be exerted on highly magnetic point-like particles located in their vicinity (analogous
to equations (18) and (19)) are readily derived, as summarized in the appendix. It is also
motivated by the expectation that long uniformly magnetized rods with elliptical cross sections
are reasonable facsimiles of long bar magnets.

Figure 5 illustrates the manner in which the figures of merit defined by equations (20)
and (21) vary as a function of distance y from the surface of each magnet pictured in figure 4.
It is obvious that—for a given magnetization density—the two one-sided flux structures ((b)
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Figure 3. Examples of discrete magnetization arrays that approximate the continuous distribution
shown in figure 2. In each case the flux is enhanced above the array and reduced below the array. The
topmost example requires the use of bar magnets magnetized at odd angles. The middle example
is a conventional Halbach configuration. Some degree of flux cancellation is sacrificed for ease
of construction. The bottom example enables one to achieve better control over the direction and
periodicity of the magnetization vector, and it can be constructed from a single type of magnet.
Unlike the ideal one-sided flux array, all of these structures subject point-like magnetic particles to
forces that do depend somewhat on the transverse spatial coordinate.

and (d)) outperform the conventional structures at short range, and that the opposite is true at
large distances. Several factors contribute to this difference. At short range, the forces exerted
by the one-sided flux structures are larger both because the magnetic flux is forced to loop
back to the magnet surface on a length scale determined by the periodicity of the magnetization
vector and because all of the flux is forced to emanate from a single surface. On the other hand
the magnitude of these forces decreases exponentially as a function of distance, consistent with
the fact that neither structure has a net magnetic moment. The figures of merit for the other four
structures decrease more slowly, converging to a ∝1/y5 behaviour at large distances, consistent
with the fact that each one does possess a net magnetic moment. Note that the cross sectional
areas (and hence the net magnetic moments) of the magnets shown in panels (a), (c) and (e) of
figure 4 are identical.

Comparisons between the figures of merit for various combinations of structures are
instructive. For example, the characteristic transverse dimension over which magnetic flux
emanates from the structures in panels (a) and (b) is the same (i.e. 2L). On the other hand,
the return paths for this flux are completely different. All of the magnetic flux emanating
from the one-sided flux structure is forced to loop back to the magnet surface over a transverse
distance of no more than 2L, while no such constraint exists for the cylinder. The result is
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Figure 4. Cross sections for the six magnetic structures that are compared for their relative trapping
efficiencies in figure 5. In each case the magnetization density is uniform, and the origin of the
coordinate system is located at the surface of the magnet. Panel (a) shows an infinitely long
cylinder of radius L uniformly magnetized perpendicular to its axis. Panel (b) shows an infinite two-
dimensional slab of material in which the direction of the magnetization vector rotates so that all of
the flux emanates from the right-hand surface. Both the thickness of the slab and the length scale
over which the magnetization vector changes direction (λ/2) have been set equal to the diameter
of the cylinder shown in panel (a). Panel (c) shows an infinitely long rod with an elliptical cross
section uniformly magnetized perpendicular to its axis. The area (and hence the magnetic moment)
of this structure is the same as that of the cylindrical magnet. Panel (d) shows an infinite magnetized
slab identical to that shown in panel (b), except that its thickness has been reduced by a factor of
four. Panel (e) shows another infinitely long elliptical rod, in which the major and minor axes have
been interchanged with respect to panel (c). Panel (f) shows a similar elliptical magnet, except that
the major axis has been elongated considerably.

an enhancement in both Fun and Fsat at short range. Clearly another factor that contributes to
the dramatic difference in the figures of merit for structures (a) and (b) is the simple fact that
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Figure 5. Dimensionless figures of merit for the various magnetized structures shown in figure 4.
The top panel summarizes results for unsaturated magnetic particles while the bottom panel shows
equivalent results for saturated magnetic particles. There is a one-to-one correspondence between
the labels (a)–(f) that appear in this figure and those used in figure 4.

structure (b) is physically much larger. Regardless, the thinner one-sided flux structure shown
in panel (d) still outperforms the four conventional magnets at short range, and would continue
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to do so even if truncated so as to have the same cross sectional area as the cylinder. The
elliptical structures shown in panels (c) and (e) can either be viewed as deformed versions of
the cylinder, or as approximations for rectangular bar magnets. From the former viewpoint,
comparison of the figures of merit for the structures shown in panels (a), (c), and (e) reveals the
short-range nature of changes in Fun and Fsat associated with modifications to the distribution
of magnetization within the source. Differences between these three cases at large distances
are due solely to the fact that the centre-of-mass positions of structures (a), (c), and (e) are
not equivalent. From the latter viewpoint, comparison of the results for the structures shown
in panels (e) and (f) shows the trend as the transverse dimension (and total magnetization) of
a conventional magnet is increased. Ultimately, this does not represent an efficient strategy
for exerting large magnetostatic forces; the magnetic field produced by an infinite uniformly
magnetized plane is also uniform, resulting in a situation where both figures of merit are
identically zero.

6. Conclusion

The characteristics of one-sided flux arrays summarized in the previous sections suggest that
they hold considerable promise for use in targeting or controlling the delivery of therapeutic
agents attached to small magnetic particles. For a given magnetization density and comparable
thicknesses, they tend to exert much greater magnetostatic forces on nearby point-like magnetic
particles than those that can be achieved with ‘conventional’ magnetic structures. They are thus
attractive from the viewpoint of trapping efficiency. Conversely, a relatively thin one-sided flux
array can exert short-range forces comparable to those exerted by a much thicker conventional
magnet. This could prove advantageous and/or convenient in some clinical applications, and
motivates our use of the generic term ‘magnetic bandage’. The forces exerted by one-sided flux
structures are directed toward the magnet at every point in space, and are uniform in magnitude
at a given distance from its surface. These characteristics may be beneficial both for the design
and the interpretation of well-controlled magnetic trapping experiments. At the same time, the
more rapid attenuation of forces exerted by one-sided flux structures relative to those exerted
by conventional magnets (a consequence of having zero net magnetic moment) may facilitate
efforts to achieve uniform deposition of therapeutic agents through the use of carriers with an
appropriate (non-uniform) distribution of magnetic and physical properties. Finally, the mere
fact that remarkably simple analytic expressions for the relevant magnetostatic forces exist
enhances the utility of one-sided flux structures in models of trapping dynamics that attempt to
account for hydrodynamic and physiological factors.

We re-emphasize that the focus of our investigation has largely been to explore the potential
utility of one-sided flux structures for magnetic trapping applications at a conceptual level.
We have ignored material properties (both as they apply to the manufacture of real one-sided
flux structures and as they apply to the behaviour of real magnetic microparticles and/or
nanoparticles), choosing instead to examine magnetostatic forces in two somewhat idealized
limits (referred to as ‘unsaturated’ and ‘saturated’ material responses). We have likewise
restricted our discussion to the limit in which the density of magnetic particles within the
bloodstream remains low, ignoring particle–particle interactions and any modification of the
fields that results from their introduction.

Acknowledgments

MH is grateful to C P Bidinosti for useful discussions and wishes to thank members of the
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Appendix. Infinitely long uniformly magnetized rods

We have made use of infinitely long uniformly magnetized rods as examples of ‘conventional’
magnets against which trapping efficiency (characterized by the figure of merit defined in
section 5) of one-sided flux structures can be compared. This appendix summarizes relevant
equations for the magnetic scalar potential, magnetic field, and magnetostatic forces exerted on
point-like magnetic particles in the vicinity of such rods. Complementary information can be
found in textbooks on electromagnetism.

A.1. Rod with circular cross section

The magnetic scalar potential in the vicinity of an infinitely long circular cylinder with radius
R and uniform transverse magnetization M is given by [18–20]

φm = M

2

R2

ρ
cos φ for ρ � R, (22)

where ρ and φ represent the radial and polar coordinates of an arbitrary point with respect to a
polar coordinate system coincident with the axis of the cylinder and aligned with respect to M,
as shown in figure A.1. The corresponding magnetic field is given by

H = M

2

R2

ρ2

(
cos φρ̂ + sin φφ̂

)
, (23)

where ρ̂ and φ̂ are the appropriate unit vectors. This is identical to the field produced by a
uniform linear array of dipolar sources with a magnetic moment per unit length π R2 M . The
magnetostatic force exerted on a point-like magnetic particle in the vicinity of the cylinder is
thus

Fun = −μ0βM2

4

R4

ρ5

[(
1 + cos2 φ

)
ρ̂ + 1

2
sin 2φ φ̂

]
(24)

in the unsaturated (linear induced dipole moment) limit (cf equation (3)) and

Fsat = −μ0ms M

2

R2

ρ3

[(
1 + cos2 φ

)
ρ̂ + 1

2
sin 2φ φ̂

]
(25)

in the saturated (permanent dipole moment) limit (cf equation (5)).

A.2. Rod with ellipsoidal cross section

The magnetic scalar potential in the vicinity of an infinitely long elliptical cylinder with semi-
major axis a, semi-minor axis b, and uniform transverse magnetization M can be written as [20]

φm = Mab√
a2 − b2

exp (−ξ) cos (η − β) for ξ � ξ0, (26)

where ξ and η represent the radial and polar analogues of ρ and φ in an elliptical coordinate
system [21] coincident with the axis of the cylinder as shown in figure A.2, and β represents
the polar angle between M and the semi-major axis of the ellipse. Curves along which ξ

or η are constant are families of confocal ellipses and hyperbolae, respectively. The curve
ξ0 = tanh−1 (a/b) is coincident with the surface of the magnetized ellipse while η = 0, π/2,
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Figure A.1. Cross section through an infinitely long cylinder of radius R uniformly magnetized
perpendicular to its axis.

π , and 3π/2 correspond to the +x , +y, −x , and −y axes of the Cartesian coordinate system of
figure A.2. More generally the correspondence between these coordinate systems is such that

x = f cosh ξ cos η and y = f sinh ξ sin η, (27)

where f = √
a2 − b2.

The magnetic field corresponding to the scalar potential described by equation (26) is given
by

H = Mab

a2 − b2
exp (−ξ)

[
cos (η − β) ξ̂ + sin (η − β) η̂√

sinh2 ξ + sin2 η

]
, (28)

where the unit vectors ξ̂ and η̂ are related to the unit vectors ρ̂ and φ̂ of a polar coordinate
system such that

ξ̂ = f

ρ

[
sinh ξ cosh ξ ρ̂ + sin η cos η φ̂√

sinh2 ξ + sin2 η

]
(29)

and

η̂ = f

ρ

[
− sin η cos η ρ̂ + sinh ξ cosh ξ φ̂√

sinh2 ξ + sin2 η

]
. (30)

In the limit that the eccentricity e = f/a = √
1 − b2/a2 of the ellipse is reduced to zero,

exp (−ξ) / f remains finite while ξ̂ → ρ̂ and η̂ → φ̂. At the same time equations (26) and (28)
reduce to equations (22) and (23), respectively, for β = 0.
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Figure A.2. Cross section through an infinitely long ellipse uniformly magnetized at an angle
β with respect to its semi-major axis. The foci of the ellipses and hyperbolae are given by
f = ±√

a2 − b2.

Finally, the force exerted on a point-like magnetic particle is

Fun = −μ0βM2a2b2

(
a2 − b2

)5/2

exp (−2ξ)[
sinh2 ξ + sin2 η

]3/2

×
{[

1 + sinh ξ cosh ξ cos2 (η − β)

sinh2 ξ + sin2 η
+ sin 2η sin [2 (η − β)]

4
(
sinh2 ξ + sin2 η

)
]
ξ̂

+
[

sinh ξ cosh ξ sin [2 (η − β)]

2
(
sinh2 ξ + sin2 η

) + sin2 (η − β) sin 2η

2
(
sinh2 ξ + sin2 η

)
]
η̂

}
(31)

in the unsaturated limit (cf equation (3)) and

Fsat = − μ0ms Mab(
a2 − b2

)3/2

exp (−ξ)[
sinh2 ξ + sin2 η

]

×
{[

1 + sinh ξ cosh ξ cos2 (η − β)

sinh2 ξ + sin2 η
+ sin 2η sin [2 (η − β)]

4
(
sinh2 ξ + sin2 η

)
]
ξ̂

+
[

sinh ξ cosh ξ sin [2 (η − β)]

2
(
sinh2 ξ + sin2 η

) + sin2 (η − β) sin 2η

2
(
sinh2 ξ + sin2 η

)
]
η̂

}
(32)

in the saturated limit (cf equation (5)). Note that the last term in each set of square brackets
within equations (31) and (32) is attenuated exponentially as a function of distance; all four of
these terms vanish as the eccentricity of the ellipse is reduced to zero. The remaining terms
reduce to equations (24) and (25) in this limit if β = 0, as they should.
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