Rational Development of Ternary Alloy Electrocatalysts

Chao Wang,‡ Dongguo Li,‡ Miaoang Chi,§ John Pearson,‡ Rees B. Rankin,⊥ Jeff Greeley,⊥ Zhiyao Duan,‡ Guofeng Wang,‡ Dennis van der Vliet,‡ Karen L. More,§ Nenad M. Markovic,‡ and Vojislav R. Stamenkovic§

| Supporting Information |

ABSTRACT: Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt₃(MN)₁) with M, N = Fe, Co, or Ni as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.

Highly efficient catalysts for the oxygen reduction reaction (ORR) have been studied for the development of renewable energy technologies such as fuel cells¹ and metal–air batteries.²,³ The current state-of-the-art electrocatalyst for this reaction is Pt in the form of nanoparticles (NPs) supported on high-surface-area carbon. Even though Pt is considered to be the catalyst of choice, the kinetic limitation for the ORR is substantial, resulting in loss of potential at which this reaction is taking place. In addition, the high cost and scant availability of Pt have further limited commercial applications of technologies that rely on precious metal catalysts with high rates for the ORR. Hence, one of the major efforts in the development of renewable energy technologies is to improve the performance of ORR catalysts and reduce the amount of Pt needed.

Alloying has been shown to be a promising approach to producing advanced catalytic materials.⁴–¹⁰ Previous work on extended surfaces (bulk electrodes) has demonstrated that bimetallic PtₓM (M = Fe, Co, Ni, etc.) alloys are superior for the ORR when compared to Pt, with the enhanced catalytic activity arising from the altered electronic structures of the topmost Pt atoms.¹¹,¹² This modification has been found to reduce the surface coverage by oxygenated spectator species (e.g., OH⁻) and thus increase the number of active sites accessible for molecular oxygen.⁸,¹²

So far, the focus has been largely placed on Pt-bimetallic catalysts, but other systems, such as ternary alloys, have also attracted substantial interest due to the potential for fine-tuning of the electronic structures and further improving the catalytic activity.¹³–²⁶ Though high-surface-area nanocatalysts have been intensively studied,²³–²⁶ extended surfaces of Pt-ternary alloys have not been thoroughly investigated for the ORR, and the trend of catalytic activity for the Pt-ternary catalysts has not been established yet. Moreover, the correlation between electronic structures and surface adsorption/catalytic properties still remains elusive for such multimetallic systems, which however is important for fundamental understanding of the enhanced catalysis and achieving rational catalyst design. Therefore, more systematic studies are needed for full exploration of Pt-based multimetallic systems in electrocatalysis.

In this Letter, we focus on Pt₃(MN)₁ alloy catalysts for electrocatalytic reduction of oxygen. The main objective of this study is to perform systematic evaluation of Pt-ternary alloys versus Pt-bimetallic systems. For that purpose, we first investigate well-defined extended surfaces of ternary thin-film alloys to examine their electrocatalytic activities and then develop a NP synthesis for the ternary system of choice. In addition, we also performed theoretical simulations based on density functional theory (DFT) and have been able to extend...
previously established relationships between electronic structures and catalytic performance from Pt-bimetallic to Pt-ternary systems. Polycrystalline ternary films of 50 nm in thickness were prepared by confocal magnetron sputtering. Different targets of pure metals were used for sputtering over a mirror polished glassy carbon substrate of 6 mm in diameter. The obtained films were subjected to annealing to induce a homogeneous elemental distribution and subsequent surface analyses in order to explore the existence of Pt-skin formation in ternary systems (see the Methods in the Supporting Information (SI)).

Figure 1 summarizes the results of electrochemical studies for these thin films acquired by a rotating disk electrode (RDE). Compared to polycrystalline Pt (Pt-poly), cyclic voltammograms (CVs, Figure 1A) of the as-sputtered films have similar features in the underpotentially deposited hydrogen (H upd) region (E < 0.4 V) with slightly suppressed peaks. In the ORR-relevant region (E > 0.6 V), the ternary alloy surfaces exhibit positive shifts for the onset of Pt−OH ad formation compared to Pt-poly, indicating weaker chemisorptions of oxygenated species on these surfaces. After annealing at 400 °C, the H upd peaks of ternary systems are additionally suppressed, while the onset of Pt−OH ad formation is shifted to even more positive potentials. Even though both effects can also be assigned to altered surface morphology upon thermal annealing, in what follows we prove that they are predominantly associated with the formation of a Pt-skin structure due to Pt segregation.

The surfaces of the annealed ternary thin films were examined by electrooxidation of adsorbed CO molecules. Figure 1D shows the CO stripping curves for the two types of Pt3(CoNi)1 surfaces, as sputtered and annealed. Both curves have a sharp peak at ~0.74 V, but the annealed surface exhibits lower peak intensity than the as-sputtered surface due to smoother morphology. The integrated charge of the CO stripping curves that are associated with electrooxidation of adsorbed CO are summarized in Figure 1E. The as-sputtered Pt3(CoNi)1 surface has a CO stripping charge of 98.4 μC, which is close to the value obtained for Pt-poly (109 μC) of the same geometric size (d = 6 mm). The charge of CO stripping for the annealed surface is 71.0 μC, which is about 30% lower than that of the as-sputtered surface and polycrystalline Pt. However, integration of the corresponding H upd region revealed that the annealed ternary thin film exhibits suppression of H upd of about ~50% after annealing (from 49.6 to 24.0 μC), as depicted in Figure 1E. Consequently, the calculated ratio Q CO/2Q H increased from 0.99 to 1.48 upon annealing. This behavior is typical for the Pt-skin surface formation due to the unique electrochemical adsorption properties associated with these surfaces (Figure S1, SI). As shown in our recent studies, the ratio between CO stripping and H upd charges, Q CO/2Q H, is a good descriptor of the surface compositional profile in the case...
of Pt alloys, with the value close to 1 for Pt and Pt-skeleton surfaces, and higher values revealing the formation of a Pt-skin surface due to the suppressed surface coverage by Hupd.29

The formed Pt-skin surface is expected to possess enhanced ORR catalytic activity, which was validated by polarization curves recorded by rotating disk electrode (RDE) measurements (Figure 1B). Compared to the Pt-poly surface, the as-sputtered and annealed Pt3(CoNi)1 surfaces show positive shifts of half-wave potentials, 12 and 22 mV, respectively. The specific activity at 0.95 V of the annealed surface reaches 1.75 mA/cm², whereas the as-sputtered surface achieves 1.12 mA/cm² (Figure 1C). These values correspond to improvement factors of 4 and 2.5 compared to Pt-poly (0.45 mA/cm²), respectively.

The same strategy was employed to investigate other binary and ternary systems, and hence, a trend in the ORR activity has been established. Figure 2A shows a summary of the ORR catalytic activities of the ternaries in comparison to Pt-poly and Pt3Co. All of the as-sputtered thin-film surfaces show higher activities than Pt-poly, with the improvement factors ranging from 1.7 to 2.5. Further improvement was consistently achieved by thermal annealing, which confirms Pt-skin surface formation for each ternary system. For the annealed surfaces, Pt3(CoNi)1 shows an improvement factor of ∼4 versus Pt-poly, compared to ∼2.2 and ∼3.0 for Pt3(FeCo)1 and Pt3(FeNi)1, respectively.

Figure 2B shows the relationship between the measured and predicted ORR activities based on the DFT-determined oxygen binding energies (see SI for additional details). It has been previously shown that the DFT approach can be utilized to generate volcano plots relating catalyst activity to a few key catalytic descriptors.31−33 For the ORR, these and other related studies have shown that the binding energy of atomic oxygen, ΔEo*, serves as a reliable descriptor. The volcano relationship in Figure 2B shows that, as is the case with binary Pt alloys, the ternary systems exhibit weaker oxygen binding compared to pure Pt. The weakening of the oxygen binding energy actually induces a change in the predicted rate-limiting step of the ORR (O2 + H+ + e− → OOH•) on the weak-binding side of the volcano, as opposed to OH• + H+ + e− → H2O(l) + * on the strong-binding side), and both binaries and ternaries thus fall on the opposite side of the volcano from pure Pt. The net activity of the binaries and ternaries, however, is still higher than that of Pt, which is in good agreement with our experimental results. Though it remains unclear why Pt3(CoNi)1 is the most active based on the current simulations, it is evident that the employment of multimetallic Pt-based alloys can serve to additionally tune the oxygen binding energies of Pt-based catalysts, which in turn results from corresponding changes in the electronic structures of platinum surface sites.30

On the basis of the established trend on extended surfaces, we aimed toward the synthesis of the most active Pt3(CoNi)1 nanocatalysts. Considering that conventional impregnation methods rely on precipitation from the aqueous solutions and usually do not provide NPs with homogeneous compositions, we developed an organic solvothermal approach for the synthesis of ternary alloy NPs.34,35 In general, Pt in solution tends to nucleate faster than the 3d transition metals and forms unalloyed Pt NPs due to the higher reduction potential of Pt2+ (+1.2 V) versus those of 3d metals (−0.2 to −0.4 V). However, we managed to achieve simultaneous growth for ternary alloy NPs by injection of the Pt precursor to a hot solution of the 3d transition-metal acetates (see the Methods in the SI), where 3d metal precursors could already be reduced to form metallic species and thus be able to match the fast reduction of Pt2+ to form uniform ternary alloy NPs.36

Figure 3A shows a representative transmission electron microscopy (TEM) image of the as-synthesized Pt3(CoNi)1 NPs. The monodisperse particles have an average particle size of ∼6 nm, which is close to the optimal size for Pt alloy catalysts established before.37 Elemental composition was analyzed by energy-dispersive X-ray spectroscopy (EDX), showing a composition of Pt57.7Co12.1Ni10.17 close to the expected Pt/M/N = 3:0.5:0.5 ratio. In addition, distribution of elements in the ternary NPs was mapped by EDX based on high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Figure 3B-E presents overlapped and separate maps of the elements in a typical Pt3(CoNi)1 particle. It is obvious that all of the constituents, Pt, Co, and Ni, are uniformly distributed across the particle and well intermixed in the overlapping map (Figure 3B). The observations here are consistent with our recent findings on Pt
bimetallic NPs prepared by similar methods, confirming the highly homogeneous nature of the ternary alloy NPs obtained by organic solution synthesis.

To prepare electrocatalysts, the as-synthesized NPs were mixed with high-surface-area carbon black (see the SI for experimental details). The previously established protocol for thermal treatment was applied to remove the surfactants and induce beneficial surface segregation for best catalytic performance. TEM images (Figure 3F and G) show that no significant size or morphology change happened after these treatments. A catalyst suspension was prepared by sonication of the catalyst in deionized water, and a drop of that suspension was deposited on a polished glassy carbon (GC) disk (6 mm in diameter). The content of Pt in the catalyst was adjusted to \(\sim 25\% \), and the loading of Pt on the GC electrode was \(\sim 12 \mu \text{g/cm}^2 \). Figure 4 summarizes electrochemical results for the Pt\(_3\)(CoNi)\(_1\) nanocatalysts and commercial Pt/carbon of a similar size (6 nm, Tanaka), which was used as a reference. The measured CVs have Hupd peaks at \(E < 0.4 \text{ V} \) and Pt oxidation/reduction peaks at 0.8–0.9 V. Similar to the results on extended surfaces (Figure 1A), the onset of Pt–OH\(_{ad}\) on the ternary catalyst was shifted positively by \(>25 \text{ mV} \) versus Pt/C (Figure 4A), confirming altered electronic structures and surface adsorption properties of ternary alloy NPs. Consequently, the corresponding polarization curves exhibit similar shifts in half-wave potentials and show substantially enhanced catalytic activities (Figure 4B). At 0.95 V, the as-prepared and annealed Pt\(_3\)(CoNi)\(_1\)/C catalysts have achieved improvement factors of 2.3 and 4.2 in specific activity versus Pt/C (Figure 4C), with the annealed catalyst reaching 0.55 mA/cm\(^2\) (versus 0.13 mA/cm\(^2\) for Pt/C). The level of catalytic activity improvement is consistent with the trend established on extended thin-film surfaces. Similar improvement factors were also present in mass activity, with the annealed Pt\(_3\)(CoNi)\(_1\)/C achieving 183 A/g in comparison to 49 A/g for Pt/C.

Ternary alloys of Pt and 3d transition metals were investigated as catalysts for the ORR. Systematic studies on extended surfaces of Pt-based ternary thin films revealed a volcano-type dependence between the measured catalytic activities and DFT-predicted oxygen-binding energies of corresponding model ternary alloy surfaces. On the basis of this trend, we have synthesized the catalyst of choice with the highest activity based on monodisperse and homogeneous ternary alloy NPs from organic solution synthesis. Our comparative studies show that the ternary alloy catalysts possess enhanced catalytic activities for the ORR when compared to Pt or Pt-bimetallic alloys. The most active system was found to be Pt\(_3\)(CoNi)\(_1\), which exhibits an improvement factor of \(\sim 4 \) versus Pt.

ASSOCIATED CONTENT

Supporting Information
More material characterizations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

E-mail: vrstamenkovic@anl.gov.
Acknowledgments

This work was conducted at Argonne National Laboratory, a U.S. Department of Energy, Office of Science Laboratory, operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. This research was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. Other components of the research, including a DOE Early Career Award (J.G.) and use of the Center for Nanoscale Materials, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Microscopy research was conducted at the Electron Microscopy Center for Materials Research at Argonne. STEM and element mapping were done at ORNL’s SHARE User Facility sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, the U.S. Department of Energy.

References