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A B S T R A C T

Magnetophoretic force acting on a rigid spherical cluster of single-domain nanoparticles in a constant-gradient
weak magnetic field is investigated numerically using the Langevin dynamics simulation method. Nanoparticles
are randomly and uniformly distributed within the cluster volume. They interact with each other via long-range
dipole-dipole interactions. Simulations reveal that if the total amount of particles in the cluster is kept constant,
the force decreases with increasing nanoparticle concentration due to the demagnetizing field arising inside the
cluster. Numerically obtained force values with great accuracy can be described by the modified mean-field
theory, which was previously successfully used for the description of various dipolar media. Within this theory, a
new expression is derived, which relates the magnetophoretic mobility of the cluster with the concentration of
nanoparticles and their dipolar coupling parameter. The expression shows that if the number of particles in the
cluster is fixed, the mobility is a nonmonotonic function of the concentration. The optimal concentration values
that maximize the mobility for a given amount of magnetic phase and a given dipolar coupling parameter are
determined.

1. Introduction

Magnetic beads (or microspheres) are composite objects consisting
of magnetic nanoparticles embedded in a spherical polymer matrix
[1,2]. Nanoparticles can be homogeneously distributed within the bead
volume, placed on its surface or concentrated in its center. Typical sizes
of beads are 0.1–10 µm. The most promising applications of beads are in
biotechnology and medicine. Among them are magnetic cell separation
[3], targeted drug delivery [4] and single-molecule magnetic tweezers
[5].

The physical basis for many applications of magnetic beads is the
phenomenon of magnetophoresis, i.e. the motion of magnetic particles
under the action of nonuniform magnetic field. It is known that the
sensitivity of beads to the applied gradient field is among main factors
determining their suitability for biomedical purposes [3]. As a result,
there are many experimental studies on detailed magnetic character-
ization of different beads from different manufacturers [6–8]. The
present work, on the contrary, uses a simplistic model of the magnetic
bead to conduct a numerical and analytical study, which will hopefully
provide new qualitative insights into how the magnetophoretic motion
of the bead is affected by its size and magnetic content.

2. Model and methods

2.1. Problem formulation

The bead is modeled as a cluster of N identical spherical magnetic
nanoparticles. The diameter d of particles is small enough ( 10 nm) so
that they can be considered as single-domain. Each particle has a
magnetic moment m, which can rotate freely inside the particle body
and has a constant magnitude =m vMs, where =v d( /6) 3 is the par-
ticle volume, Ms is the saturation magnetization of the particle material.
Particles are embedded in a rigid nonmagnetic spherical matrix of
diameter D, their positions are fixed. The spatial distribution of parti-
cles is random and uniform, no overlapping is allowed. Dipole-dipole
interactions between particles are taken into account. The cluster is
placed in a nonmagnetic medium and subjected to a constant nonuni-
form magnetic field with a gradient G. For definiteness, an ideal
quadrupole field is considered: =H Gx Gy( , , 0) [9]. The schematic
sketch of the investigated system is shown in Fig. 1. The primary task of
this study is to determine the magnetic force Fm acting on the cluster
due to the field for a given Rc, where =R X Y Z( , , )c c c c is the location of
the cluster center.

Let us introduce a set of appropriate dimensionless parameters that
determine the cluster behavior. The field magnitude can be character-
ized by the so-called Langevin parameter
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where µ0 is the vacuum permeability, kB is the Boltzmann constant, T is
the system temperature. The Langevin parameter is the ratio between
the magnetic (Zeeman) energy of a particle in the cluster and the
thermal energy k TB . The corresponding field vector is

= g x d y d( / , / , 0), where g is the dimensionless gradient parameter:
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The intensity of intracluster dipole-dipole interactions can be char-
acterized using the dipolar coupling parameter:

=
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.

B

0
2
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It is known that the ground state of a pair of interacting magnetic
particles is the “head-to-tail” configuration, when particles are in close
contact and their magnetic moments are collinear [10].The dipolar
coupling parameter is the ratio between the interaction energy per
particle in this state and the thermal energy of the system.Magnetite
nanoparticles, which are typical in biomedical applications, can be used
as an example to estimate these parameters.The saturation magnetiza-
tion of bulk magnetite is M 450 kA·ms

1 according to Ref.[11], but
the value M 350 kA·ms

1 is sometimes used for single-domain parti-
cles [12,13].Thus, for magnetite nanoparticles with =d 10 nm, the di-
polar coupling parameter at temperature =T 300 K is 1; for parti-
cles with 15 nm, it is 3–4.5.Typical gradient values used in the so-
called low gradient magnetic separation are µ G 10 T·m0

2 1 [14].For
magnetite nanoparticles, this corresponds to g 10 4.Sometimes much
larger gradients of the order of µ G 10 T·m0

3 1 (g 10 3) are used
[15].As for the field magnitude itself, we will here mainly restrict
ourself to values 1.In this range, the magnetic response of a nano-
particle ensemble remains linear.For 10 nm magnetite particles, = 1
corresponds to H 15 kA·m 1 (or to B 20 mT). This weak field range
is relevant for many biomedical diagnostic systems [16–18].Besides,
this restriction on the field magnitude simplifies the simulation proce-
dure, since now it is possible to neglect the magnetic anisotropy of real

single-domain particles.It is known that in the general case magnetic
anisotropy can significantly effect the magnetization of uniaxial nano-
particles distributed in a solid matrix [19].However, for noninteracting
particles with the random easy-axis distribution, the initial slope of the
magnetization curve does not depend on the anisotropy energy, it is
always exactly the same as in the case of isotropic particles [20,21].As
for interacting uniaxial particles, our recent simulation study [22] also
did not find any significant dependency between the weak-field mag-
netization and the anisotropy energy. The last important dimensionless
parameter is the volume fraction (volume concentration) of nano-
particles inside the cluster:

= =Nv
V

Nd
D

,
3

3 (4)

where =V D( /6) 3 is the cluster volume. The notation =x x d/ will be
used for the reduced distance.

2.2. Langevin dynamics simulations

In order to accurately take into account the combined effect of the
applied field, intracluster interactions and thermal fluctuations on the
cluster behavior, the Langevin dynamics method is used. The Langevin
equation that describes the magnetodynamics of a single-domain par-
ticle is the stochastic Landau-Lifshitz-Gilbert equation [23,24]. For the
ith particle of the simulated cluster it reads

= × × ×m m H m m Hd
dt m
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0 is the gyromagnetic ratio (measured in
m·A ·s1 1), is the phenomenological dimensionless damping constant,
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det is the total deterministic field acting on the

particle, it is the sum of the applied field and dipolar fields due to all
other particles, Hi

fl is the fluctuating thermal field. H t( )i
fl is a Gaussian

stochastic process with the following statistical properties:
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where k and l are Cartesian indices, angle brackets denote a mean
value, ij is the Kronecker delta, t( ) is the Dirac delta function, D is the
strength of the thermal fluctuations. Eq. (5) can be rewritten in the
dimensionless form:
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where the = =e m m t t/ , /i i D is the reduced time, = µ m k T/2 B0D is
the characteristic time scale of the rotary diffusion of the magnetic
moment (typically, 10 10

D s [13]), = = +Hµ m k T/i
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where = =r r rgx gy( , , 0),i i i ij i j is the vector between centers of
particles i and j, =r x y z( , , )i i i i .

The input parameters of the simulation are N g, , , and
= = +µ mH k T g X Y/ * *c c B c c0

2 2 , where Hc is the value of the external
field in the center of the cluster. In simulations, the cluster is always
positioned on the Y axis: = = >X Z Y0, 0c c c . Using c, the cluster
position is determined as =Y g/c c . Using N and , the cluster diameter

Fig. 1. Schematic sketch of the problem: field lines of the applied quadrupole
field H and the cluster positioned on the Y axis. The inset shows a snapshot of
the cluster in its initial state when orientations of magnetic moments are
random. The cluster parameters in the inset are = =N 1000, 0.05 and
D d27 .
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is determined as =D N/3 . Then the cluster is generated as follows.
The ith particle ( i N1 ) is randomly placed inside a cube with a side
length of D and with the center located at Y(0, , 0)c . If after this the
particle is outside of the sphere of radius D/2 or if it overlaps with
previously placed particles (i.e., with particles <j i), the position is
rejected and the new position is generated. This is repeated until a
suitable position is found. Then the initial state of ei is chosen at
random. Then the state of the particle +i 1 is generated according to
the same rules. After the cluster is generated, the standard Heun scheme
[24] is used for numerical integration of Eqs. (9)–(12). The damping
constant in simulations is = 0.1 and the integration time step is

=t 0.002. After every time step, fields i
tot are recalculated using the

current orientations of the particles. Dipolar interaction fields between
every pair of particles in the cluster are calculated directly, without
any truncations or approximations. Periodic boundary conditions
are not used. Position and orientation of the cluster as a whole
remain fixed during simulations. The following values of input para-
meters are investigated numerically: 0.25 2, 1 7, 0.05

= =g N0.45, 10 , 103 2–103.
The instantaneous force on a point-like magnetic moment due to

external field is m Hµ ( · )0 [25]. Then, for a quadrupole field, the force
on the ith particle is

=F µ mG e e( , , 0).m i i x i y, 0 , , (13)

If the field is large enough, the particle magnetic moment is always
aligned with its direction and the magnitude of the force has its max-
imum value µ mG0 . For modeled systems the condition gD 1 is ty-
pically fulfilled. It means that the field magnitude and direction do not
significantly change within the cluster. In this case, all particles in the
large field are also collinear with each other and the cluster is saturated,
its total magnetic moment is = mNsatM and the force is =F µ Gsat sat0M .
A normalized magnetic force then can be introduced as =f F F/m m sat.
For an arbitrary field magnitude, the net external force is calculated in
simulations as
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To find this average quantity, the sampling of instantaneous force va-
lues starts after the time period of =t 200 10 8

D –10 7 s. In all con-
sidered cases, this time is enough for the simulated system to reach
equilibrium. The total simulated period for each specific set of input
parameters is about 2000 D . Note that in biomedical applications, such
as magnetic cell separation, typical velocities of magnetic micro-
particles are 10–10 µ2 m/s [3]. So, the time it takes a microparticle to
travel a distance equal to its diameter (10 3–10 1 s) is several orders of
magnitude larger than the time required to achieve an equilibrium force
value. This justifies the neglect of the cluster translational motion in
simulations. The same reasoning remains valid even if magnetic ani-
sotropy of particles is taken into account. It is known that anisotropy
slows down the relaxation time of magnetic moments, but for 10 nm
iron oxide particles this time is still comparable with D [11]. The si-
tuation can be more complicated for other magnetic materials. For
example, 10 nm cobalt ferrite particles have the relaxation time 1 s
[26], so the cluster with such particles will presumably remain in a
nonequilibrium state during its magnetophoretic motion. This situation
is beyond the scope of the present work. For every particular set of
input parameters, the force values are averaged not only over simula-
tion time but also over ten independent realizations of the cluster.
These realizations differ in positions of particles and initial orientations
of magnetic moments. Such averaging can be also considered as an
implicit account of the cluster rotation which may arise due to small
inhomogeneities in the particle spatial distribution. In practice, force
values for different realizations are very close. Error bars presented on
the plots below show 95% confidence intervals for calculated averages.

2.3. Analytical solution

A much more common approach to the problem at hand is to con-
sider the cluster as a homogeneous paramagnetic sphere of volume V. In
this approximation, if the gradient is relatively small (gD 1) and if
the cluster and the surrounding medium are linearly magnetizable, the
magnetic force on the cluster due to external field H is [27,28]:

=
+

F µ
µ µ

µ µ
V H3

2 2
,m s

c s

c s

2

(15)

where µc and µs are absolute magnetic permeabilities of the cluster
material and the surrounding medium, correspondingly. For the non-
magnetic medium, =µ µs 0 and Eq. (15) reduces to

=F µ V H( /2),m 0
2 (16)

=
+1 /3

,c

c (17)

where = µ µ/ 1c c 0 is the initial susceptibility of the cluster material.
To elaborate on the meaning of the quantity , let us first consider an
elongated cylindrical sample homogeneously filled with the magnetic
material with the susceptibility c. If a weak uniform magnetic field H is
applied along the main axis of the cylinder, then the relation between
the sample magnetization and the field is =M Hc . For a spherical
sample, the situation becomes more complicated. Now c describes the
relation between the magnetization and the magnetic field inside the
sample Hint, i.e. =M Hc int. The internal field does not coincide with
the applied one, the difference between two fields is called the de-
magnetizing field. It is created by the surface divergence of the sample’s
own magnetization [29]. For a sphere, the relation between applied and
internal fields is = +H H M/3int . It is easy to see, that for a sphere

= + =M H H/(1 /3)c c . So, can be considered as the cluster ef-
fective susceptibility. The total magnetic moment of the cluster is

= VHM .
For a quadrupole field, the force Eq. (16) can be rewritten in the

normalized form
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where L is the so-called Langevin susceptibility, which describes the
initial magnetic response of an ideal paramagnetic gas [20]:

= =
µ m N

k TV3
8L

B

0
2

(19)

Now the only unknown quantity is the initial susceptibility c of the
cluster material. In our case, this is a solid dispersion of interacting
single-domain nanoparticles. To estimate c, we will use the so-called
modified mean-field theory (MMFT). This approach was first proposed
for the description of static magnetic properties of concentrated ferro-
fluids [30,31]. MMFT also showed its effectiveness in the description of
other media containing magnetic nanoparticles, such as ferrogels [32]
and magnetic emulsions [33]. It was shown in Refs. [22,34] that MMFT
is able to successfully describe the initial susceptibility of nanoparticles
embedded in a solid nonmagnetic matrix. According to MMFT, the
susceptibility of an ensemble of single-domain nanoparticles is given by

= +(1 /3).c L L (20)

Then the cluster effective susceptibility takes the form

=
+

+ +
1 /3

1 /3 /9
.L

L

L L
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Eqs. (18) and (21) completely determine the magnetic force acting on
the cluster. Their applicability range is to be tested via numerical si-
mulations.

3. Results and discussion

3.1. Magnetic force

One the simulation results is that the force acting on the cluster
positioned on the Y axis is directed predominantly along this axis, the
average x-component of the force is zero within the error bar. Fig. 2
illustrates dependencies of the magnetic force magnitude on the mag-
netic field intensity c. It is seen that Eqs. (18) and (21) accurately
describe simulation results in the weak field limit. With increasing field,
the growth of the force slows down due to the fact that the cluster
magnetization curve is nonlinear – its magnetic moment cannot be
larger than satM and the force cannot be larger than the corresponding
value Fsat. It is noteworthy that the field range, where the linear re-
sponse assumption is valid, increases with increasing particle con-
centration. In Fig. 2a, which corresponds to = 0.05, nonlinearity be-
comes noticeable already at 1, but in Fig. 2b ( = 0.4) the linear law
Eq. (18) is valid up to = 2. Fig. 2 gives simulation results for clusters
of different sizes, =N 100 and =N 1000. Simulation points for two
cases are very close and this is an encouraging result. Due to limited
computational resources, we only investigate clusters with N 103,
which at the lowest considered concentrations 0.1 have a diameter
of a few tenths of a micron. But the weak dependency of the cluster
reduced properties on its size indicates that obtained results should
remain relevant for larger structures with D 1–10 µm.

Simulations also show that the force acting on an N-particle cluster
is smaller for more concentrated clusters. It is clearly seen in Fig. 3. In
the limit 0, the normalized force is =f /3m c . With increasing ,
the force starts a nonlinear decline, which is more pronounced at larger
coupling parameters . At = 7 and = 0.45, the force drops by almost
an order of magnitude. MMFT accurately describes simulation results
for all considered values of and and can be used to analyze the
observed behavior. The total magnetic moment of the cluster and the
magnetic force Eq. (16) are proportional to the quantity =V V( / ) m,
where =V vNm is the total amount of magnetic material in the cluster.
In the case when V is fixed, the force is controlled by the susceptibility

, which is a measure of the magnetic response per unit volume. But if
Vm is fixed (this is the case in simulations), the force is determined by

/ , which is a measure of the magnetic response per particle. If

intracluster interactions between particles are neglected (the Langevin
approximation), the susceptibility is given by the Langevin value

= L, which grows linearly with the concentration . As a result, for a
given Vm, the quantity / and hence the force do not depend on the
particle concentration. The force always equals to the zero-concentra-
tion value = =F F V µ GH( /3) (8 )m c sat m c0 . Eq. (20) goes beyond the
Langevin approximation and takes into account the fact that dipole–-
dipole interactions between an arbitrary particle and its local sur-
roundings, on average, help the particle to align with the field. c grows
quadratically with the concentration and /c grows linearly. Eq. (21)
additionally takes into account the demagnetizing field, which is the
long-range effect of dipole–dipole interactions. This field, in accordance
with its name, weakens the response of an arbitrary particle to the
applied field. The demagnetizing field is proportional to , which
grows slower than linearly with and bounded from above by the value

= 3 (see Fig. 4 below). Consequently, at fixed Vm and large , the
quantity / and hence the force decrease hyperbolically with the
concentration, = =F F V µ GH( /8 ) (3 / )m c sat m c0 .

Fig. 2. Normalized magnetic force on the cluster vs. magnetic field in the center of the cluster. = 0.05(a) and 0.4(b). Symbols are simulations results for =g 0.001.
Different symbols correspond to different dipolar coupling parameters (see legend). Larger and darker symbols are for =N 1000, smaller and lighter symbols are for

=N 100. Solid lines are analytical predictions from Eq. (24), for the same dipolar coupling parameters.

Fig. 3. Normalized magnetic force on the cluster vs. volume fraction of particles
in the cluster. = 0.25c . Symbols are simulations results for =N 500 and

=g 0.001. Different symbols correspond to different dipolar coupling para-
meters (see legend). Curves are analytical predictions from Eq. (24), for the
same dipolar constants.
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3.2. Magnetophoretic mobility

The analytical model based on MMFT shows very good agreement
with the simulation results in a wide range of interaction parameters
and . Potentially, the model can be used for an accurate description of
the cluster magnetophoresis at temporal and spatial scales that are not
easily accessible via direct nanoscale simulations. For example, the
model can be used to obtain a universal expression for the so-called
magnetophoretic mobility. It is known that magnetic microparticles
moving in a viscous nonmagnetic liquid with time attain a constant
velocity value u, which is determined by the balance between the
magnetic force Fm and the drag force Fd [3]. The latter for spherical
particles with low Reynolds numbers is given by the Stokes’s law:

=F uD3 ,d (22)

where is the viscosity of the suspending liquid. In the general case, the
drag force should contain the hydrodynamic diameter of the cluster Dh,
which can be larger than D if the cluster core is covered by some
nonmagnetic shell. But here we assume that two diameters coincide.
From the balance condition =F Fm d one obtains

=u SV
D3

,m (23)

where = =S H Hµ µ H( · ) ( /2)m 0 0
2 is known as the magnetophoretic

driving force [3,8]. The proportionality factor = V D/3M is the
cluster magnetophoretic mobility. Using Eq. (21), the mobility can be
rewritten as

=

=

= +
+ +

V
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18

1
18
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18
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1/3

2
2/3
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It should be emphasized that Eq. (24) is not specifically tied to a
quadrupole field considered earlier. However, it still assumes that the
field magnitude is small and the cluster response is linear. According to
Eq. (24), the maximum possible mobility for a given diameter D is

=D D( ) /6max
2M . For =D 1 µm and = 10 Pa·s3 , this value is

= 1.67·10 m (T·A·s)max
10 3 1M . The concentration dependency of the

normalized mobility =D/ ( ) /3maxM M simply repeats the concentra-
tion dependency of the susceptibility. Dependencies for different are

shown in Fig. 4. Since the diameter is fixed, the friction coefficient D3
is constant and the increase in the concentration only leads to the slow
increase in the magnetic force and hence in the mobility. A more
complex concentration dependency is observed if, instead of D, the total
amount of magnetic material Vm is fixed. The quantity

=V V( ) (6 / ) /18ref m m
2/3M may be chosen as a reference mobility value

for this case. For = =N d10 , 105 nm and = 10 Pa·s3 , this value is
= 1.2·10 m (T·A·s)ref

11 3 1M . Concentration dependencies of
V/ ( )ref mM M at different are given in Fig. 5. It is seen that de-

pendencies are nonmonotonic, for every there is an optimal con-
centration value at which the mobility is maximal. The corresponding
value of L can be found by solving =( / ) 0L V, mM . It gives the op-
timal value of the Langevin susceptibility 1.9813L opt, . Then the op-
timal volume fraction and diameter are

= =D V1.9813
8

, 6 .opt opt
m

opt

1/3

(25)

The mobility under these optimal conditions is V4 ( )opt ref m
2/3M M .

The observed nonmonotonic dependency can be explained as follows.
In the limit 0, the parameter V( / ) m, which controls the magnetic
force, has a definite finite value V8 m. On the contrary, the cluster
diameter and hence the friction coefficient are infinitely large, so the
mobility in this limit is zero. With increasing concentration, the friction
coefficient decreases as 1/ 1/3 and the mobility initially increases as

= V8 ( )ref m
1/3M M . But at > opt , the magnetic force decrease be-

comes hyperbolic (due to strong demagnetizing fields) and dominates
over the drag decrease. As a result, the mobility eventually falls down
as = V(3/ ) ( )ref m

2/3M M .

4. Conclusions

In this work, the force acting on a polymer magnetic bead in a
constant-gradient field is calculated by means of the Langevin dynamics
method. The bead is modeled as a spherical rigid cluster of randomly
distributed single-domain particles. The magnitude of the applied field
is typically small enough so that the cluster magnetization remains a
linear function of the field. It is demonstrated that if the total number of
particles in the cluster is fixed, the increase in the particle concentration
leads to the nonlinear decrease in the force magnitude. The reason for
this is the demagnetizing field inside the cluster, which weakens the

Fig. 4. Normalized magnetophoretic mobility of the cluster vs. volume fraction
of particles in it [Eq. (24)]. The cluster diameter is fixed ( =D const). Different
curves correspond to different dipolar coupling parameters, from bottom to top:

= 1, 2, 4 and 8.

Fig. 5. Magnetophoretic mobility of the cluster vs. volume fraction of particles
in it [Eq. (24)]. The total amount of magnetic phase in the cluster is fixed
( =V constm ). Different solid curves correspond to different dipolar coupling
parameters, from bottom to top: = 1, 2, 4 and 8. Dashed line is the high-
concentration asymptote 3/ 2/3.
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response of an arbitrary particle to the applied field and hence de-
creases the cluster net average magnetic moment. It is also shown that
the cluster can be successfully represented as a single paramagnetic
particle whose magnetization obeys MMFT. The theory describes nu-
merically obtained force values with great accuracy in a broad range of
simulation parameters. Within MMFT, a new universal formula is ob-
tained for the magnetophoretic mobility of an isolated cluster moving
in a viscous nonmagnetic liquid. The formula shows that for a given
number of particles and a given dipolar coupling parameter there is an
optimal concentration value (and hence an optimal diameter) for which
the mobility is maximal. Below this value, the mobility becomes smaller
due to the increase of the cluster friction coefficient; above this value,
the mobility becomes smaller due to the discussed decrease of the
magnetic force.

In future, we hope to investigate a more general problem when
nanoparticles do not occupy the whole bead, but instead distributed
only in an outer spherical shell surrounding a nonmagnetic polymer
core.
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