
Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Dynamics of magnetic nanoparticles in viscoelastic media

Hilke Remmera,⁎, Eric Roebenb, Annette M. Schmidtb, Meinhard Schillinga, Frank Ludwiga

a Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Braunschweig, Germany
b Institute of Physical Chemistry, Universität zu Köln, Köln, Germany

A R T I C L E I N F O

Keywords:
Magnetic nanoparticles
Dynamics
Ac susceptibility
Viscoelastic media
Nanorheology
Voigt-Kelvin model

A B S T R A C T

We compare different models for the description of the complex susceptibility of magnetic nanoparticles in an
aqueous gelatin solution representing a model system for a Voigt-Kelvin scheme. The analysis of susceptibility
spectra with the numerical model by Raikher et al. [7] is compared with the analysis applying a
phenomenological, modified Debye model. The fit of the models to the measured data allows one to extract
the viscoelastic parameter dynamic viscosity η and shear modulus G. The experimental data were recorded on
single-core thermally blocked CoFe2O4 nanoparticles in an aqueous solution with 2.5 wt% gelatin. Whereas the
dynamic viscosities obtained by fitting the model – extended by distributions of hydrodynamic diameters and
viscosities – agree very well, the derived values for the shear modulus show the same temporal behavior during
the gelation process, but vary approximately by a factor of two. To verify the values for viscosity and shear
modulus obtained from nanorheology, macrorheological measurements are in progress.

1. Introduction

The dynamic of magnetic nanoparticles (MNPs) are determined by
two distinct mechanisms: the Brownian rotation and the Néel relaxa-
tion. In the former one, the whole nanoparticle including shell rotates
with a characteristic relaxation time τB which – for a Newtonian fluid -
is given by

τ ηV
k T

= 3 .B
h

B (1)

Here η is the dynamic viscosity of the fluid, Vh the hydrodynamic
volume of the particle, kB the Boltzmann constant and T the thermo-
dynamic temperature. Thus, measurements of the Brownian relaxation
time reflect information on the matrix. In the latter mechanism, the
magnetic moment flips between easy axes by thermal agitation. For
MNPs with uniaxial anisotropy, the Néel relaxation time is often
approximated by
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with τ0 being a characteristic time between 10−9 s and 10−11 s, the
anisotropy constant K, and the core volume Vc. Thus, measurements of
the Néel relaxation time do not provide any information on the matrix.
If the MNPs are suspended in a liquid, both mechanisms are possible
and the one with the shorter relaxation time dominates resulting in an
effective relaxation time

τ τ τ
τ τ
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The use of the Brownian relaxation time of thermally blocked MNPs
for rheological studies on a nano- or micro-scale has already been
proposed by Bacri et al. [1]. Whereas the MNP dynamics are well
understood in media like Newtonian fluids, e.g. DI water, or if they are
immobilized, e.g. by freeze drying [2,3], only recently theoretical and
experimental studies on the MNP dynamics in non-Newtonian fluids or
viscoelastic matrices were published. The understanding of the MNP
dynamics in non-Newtonian and viscoelastic matrices is of particular
importance for many biomedical and technical applications, e.g. in
ferrogels.

Roeben et al. [4] performed measurements of the ac susceptibility
(ACS) on aqueous solutions of ethylene glycol, triethylene glycol (TEG)
and poly-(ethylene glycol) (PEG) using CoFe2O4 nanoparticles as
nanoprobes, analyzed the susceptibility spectra with modified Debye
models and compared the rheological parameters with those obtained
from macrorheology. Tschöpe et al. [5] performed optical measure-
ments of the dynamics of Ni nanorods in oscillating magnetic fields in
aqueous gelatin solutions, resembling a model for a Voigt-Kelvin
system, and in a worm-like micellar solution, acting as a Maxwell
model system, as matrices. Recently, Remmer et al. [6] presented ACS
measurements on aqueous gelatin solutions with gelatin contents
ranging from 2.5 to 10 wt% using CoFe2O4 nanoparticles as probes.
The measured imaginary parts of the complex susceptibility were
analyzed with a numerical model by Raikher et al. [7] to extract the
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dynamic viscosity and the shear modulus as a function of gelation time.
This paper focuses on the analysis of the complex susceptibility

spectra of thermally blocked MNPs in aqueous gelatin solutions,
representing a well-established Voigt-Kelvin model system. The analy-
sis performed with the numerically elaborate model by Raikher et al.
[7] is compared with that based on a much simpler model. The latter is
based on the Debye model and the implementation of a complex
viscosity in the Brownian relaxation time (Eq. (1)).

2. Models

A Voigt-Kelvin system is a viscoelastic matrix system with a viscous
and an elastic term in parallel. The equation of motion of such a model
system is [5,7]

I ζ K M t y tϑ̈ + ϑ̇ + ϑ = ( ) + ( ) (4)

with the moment of inertia I, the rotational friction coefficient ζ, the
linear elastic restoring parameter K, the magnetic torque M(t), the
stochastic driving torque y(t), and the angle between magnetic moment
and applied magnetic field ϑ. For a spherical particle the viscosity η is
related to the rotational friction coefficient via ζ πηr= 8 h

3 and the shear
modulus to the elastic restoring parameter via K πGr= 8 h

3. Tschöpe
et al. [5] analytically solved Eq. (1) by neglecting the inertia term and
the influence of thermal fluctuations and for an oscillating magnetic
field. This approach is justified since the magnetic moment of the
utilized Ni nanorods amounts to about 4·10−17 Am2 which produces a
dimensionless magnetic energy parameter ξ μ mH k T= /( ) > > 1B0 for
the applied static field of 9 mT/μ0. Herem is the magnetic moment of a
nanoparticle, μ0 the vacuum permeability and H the applied magnetic
field.

In contrast, Raikher et al. [7] derived a set of equations, which can
only numerically be solved, in the limit of negligible inertia and
magnetic torque terms:
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and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟χ nm

k T
k T
K

sinh k T
K

= exp −
B

B B
0,⊥

2

(7)

as well as
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The symbol α describes the orientations parallel (||) or perpendi-
cular (⊥) to the excitation field. The time constant τK = ζ/K. The total
susceptibility calculates to

χ ω χ ω χ ω( ) = 1
3

( ( ) + 2 ( )).tot || ⊥ (10)

Raikher et al. also provided analytical expressions for the limits of
low- (kBT > >K) and high-rigidity (kBT< <K). The expression for the
dynamic susceptibility in the low-rigidity limit equates for negligible
elasticity the standard Debye model

χ ω
χ
iωτ

( ) =
1 −

,
B

0

(11)

however, the equation for the Brownian relaxation time τ =B
ζ

k TB
given

in [7] (therein denoted as Debye time τD) differs from the established
expression in a purely viscous liquid by a factor of two. Therefore, we
tentatively replaced kBT in Eq. (5) by 2kBT in order to resemble the
standard expressions for the dynamic susceptibility of a Newtonian
fluid in the limit of negligible elasticity, i.e. τ =B

ζ
k T2 B

.

Fig. 1 shows ac susceptibility spectra simulated with Raikher's
model – including the aforementioned modification – for a tempera-
ture T=296 K and CoFe2O4 MNPs with a hydrodynamic diameter
dh=46 nm. In Fig. 1(a), the shear modulus was kept constant at
G =0.1 Pa and the dynamic viscosity η was varied between 10−3 Pa·s
and 5·10−2 Pa ⋅s. For comparison, Fig. 1(b) shows the spectra for a
constant η=10−3 Pa·s and varying G between 1 Pa and 50 Pa. As can be
seen, an increasing viscosity provides a shift of the maximum in the
imaginary part towards lower frequencies and an increasing G causes
both a drop of amplitude of the complex susceptibility and for larger
values a shift towards higher frequencies.

Thus, as an alternative analytical solution we apply the following
approach, a modified Debye model. The complex susceptibility within

Fig. 1. Simulated ac susceptibility spectra (real part:solid lines, imaginary part:dashed lines) based on Raikher model: (a) G=0.1 Pa, η varying between 10−3 Pa ⋅s and 5·10−2 Pa ⋅s (b)
η=10−3 Pa·s, G varying between 1 Pa and 50 Pa.
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the Debye model
⎛
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sinusoidal magnetic field Hac is given by
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with the static susceptibility χ0
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k T

=
3

.
B

0

2

(13)

Here n is the number concentration of MNPs. For thermally
blocked magnetic moments, the effective relaxation time is given by
the Brownian one which - for a Newtonian fluid – is given by Eq. (1)
which reads for spherical nanoparticles

τ
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k T

Aη=
4

=B
h

B

0
3

0 (14)

with hydrodynamic radius rh and A =
πr

k T
4 h

B

3
.

The frequency-dependent viscosity for the Voigt-Kelvin model is
given by

η ω η G
iω

( ) = −0 (15)

with viscosity η0 and shear modulus G. Replacing η0 in (14) by (15) and
inserting it in (12), one obtains

χ ω
χ
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χ
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0

0
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Note that this phenomenological approach is basically the same
that Roeben et al. [4] applied for the analysis of their ac susceptibility
spectra measured on non-Newtonian aqueous TEG and PEG solutions.
Comparing the complex shear modulus obtained from fitting the
measured spectra with their modified Debye model and from macro-
rheological measurements, good agreement was found.

The spectra simulated with Eq. (11) for the same parameters as in
Fig. 1 are depicted in Fig. 2. The scaling or the real and imaginary part
spectra with η0 and G is qualitatively similar to that in Fig. 1.

The plausibility of this modified Debye model can be verified with
two additional models: The DiMarzio-Bishop model [8] and an
adaption of the model by Tschöpe et al. [5].

DiMarzio and Bishop derived an equation for the dielectric
permittivity of a Voigt-Kelvin element. Transferring their equation to
the magnetic case, one obtains for the complex susceptibility
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Eq. (17) can be significantly simplified since for a diluted suspen-
sion of magnetic nanoparticles χ χ, < < 2∞ 0 . This provides
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Assuming that χ∞=0, one obtains the same expression for the
complex susceptibility as for the modified Debye model (Eq. (16))
except that now χ0 is replaced with χ AG(1 + )0 .

Adapting the model described in [5], the expression of the complex
susceptibility of spherical magnetic nanoparticles in an oscillating
magnetic field with ξ > > 1 reads
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This equation differs from (16) only by the fact that G and η0 are
now divided by ξ/2 each. The fact that τB in (16) is replaced by 2τB/ξ is
identical to the asymptotic limit of the transverse relaxation time of a
Brownian nanoparticle [9].

The spectra of real and imaginary parts of the ac susceptibility
simulated for T=296 K, dh=46 nm, G=0 Pa, and η=1 mPa ⋅s simulated
with the different models are depicted in Fig. 3. Apparently, there are
no differences between the models by DiMarzio and Bishop (Eq. (19)),
the model by Tschöpe (Ms=4·10

5 A/m and B=4 mT, corresponds to
ξ=2) (Eq. (21)) and the modified Debye model (Eq. (16)) and the
spectra accord with the standard Debye model (see Fig. 3(a)). The
numerical Raikher model cannot be calculated for G=0 Pa. The spectra
in Fig. 3(b) calculated with the same parameters like for Fig. 3(a) but

Fig. 2. Simulated ac susceptibility spectra (real part:solid lines, imaginary part:dashed lines) based on modified Debye model: a) G=0 Pa, η varying between 10−3 and 1·10−1 Pa⋅s b)
η=10−3 Pa⋅s, G varying between 0 and 50 Pa.
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G=50 Pa show differences between the models. The DiMarzio Bishop
model does not cause a change in susceptibility amplitude (as expected
from comparing Eqs. (16) and (19)). The adaption of the model by
Tschöpe et al. and the modified Debye model show the same behavior,
but a higher shift of the imaginary part to higher frequencies and a
bigger change in the susceptibility amplitude than the spectrum based
on the Raikher model. If the susceptibility spectra calculated for the
DiMarzio Bishop model were normalized to χ AG(1 + )0 , they would
coincide with those calculated with the modified Debye model.

3. Comparison with experiment

To compare the Raikher model and the modified Debye model with
experimental data, the results acquired on an aqueous solution with
2.5 wt% gelatin content were used. As magnetic nanoprobes, CoFe2O4

single-core nanoparticles with a PAA shell and a mean core diameter of
15.0 ± 0.2 nm determined by TEM were utilized. The hydrodynamic
diameter with 18.0 ± 0.4 nm was determined by ac susceptibility
measurements at room temperature and in DI water solution [10].
As a consequence of the large anisotropy constant of CoFe2O4 (about
105 J/m3), the particles are thermally blocked at room temperature.
The sample volume amounts to 150 µL with 0.038 wt% MNPs.

The ac susceptibility measurements were performed with a tem-
perature adjustable fluxgate-based ac setup, originally designed for
measurements of magnetic nanoparticles in rotating magnetic field
[11]. The accessible frequency range is between 2 Hz and 9 kHz. A
magnetic field amplitude of 200 µT was applied in order to be in the
low-field limit (ξ < < 1).

To study the gelation dynamics, the sample was heated up to 313 K
for 60 min, so that the gelatin is in the sol state. Afterwards the sample
was rapidly cooled down to 296 K and kept at this temperature. ACS
measurements were carried out every 30 min, starting before cool-
down. More details about material and measurements are described in
[6].

The ac spectra show a shift of the peak position of the imaginary
part χ′′ towards lower frequencies with increasing gelation time, a
decrease of the amplitude and a broadening of the spectra (see Fig. 4).
The real part of the measurements could not be analyzed because the
static susceptibility was outside the measurement window.

The spectra of the imaginary part were fitted with the model by
Raikher (Eq. (5)) and the modified Debye model (Eq. (16)). In both
cases, lognormal distributions of hydrodynamic diameter and local
dynamic viscosity had to be implemented to properly fit the experi-
mental data. Fig. 5 shows the shear modulus and dynamic viscosity as a
function of gelation time as obtained from the fitting procedure. The
values for the dynamic viscosity are quite similar for both models.

Qualitatively similar trends are observed for the shear modulus, but the
values calculated by the Raikher model are approximately twice the
shear modulus determined by the modified Debye model.

4. Conclusions

We compared two models based on a Voigt-Kelvin element to
analyze ACS measurements of MNPs in aqueous gelatin solution. The
modified Debye model and the model based on Raikher provide
qualitatively the same behavior for varying viscosity η and shear

Fig. 3. Comparison of ac susceptibility spectra based on the models Debye, DiMarzio Bishop, modified Debye model, model by Tschöpe for (a) G=0 Pa and additional with Raikher's
model for (b) G=50 Pa.

Fig. 4. The imaginary part of the ac susceptibility spectra measured on the 2.5 wt%
gelatin solution.

Fig. 5. Viscosity (closed symbols) and shear modulus (open symbols) determined by the
models of Raikher and modified Debye model for a 2.5 wt% aqueous gelatin solution
sample.
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modulus G in simulations. With increasing viscosity the maximum in
the imaginary part shifts towards lower frequencies. An increasing
shear modulus causes both a drop of amplitude of the complex
susceptibility and for larger values a shift towards higher frequencies.

The fitting of the measured data shows a good agreement for the
viscosity. The values for the shear modulus differ approximately by a
factor of two.

A decision which of the two models provides more accurate values
for the shear modulus and dynamic viscosity requires a comparison
with macrorheological measurements which are in progress. The
modified Debye model is based on very simple assumptions whereas
the Raikher model is based on solving the equation of motion of a
Voigt-Kelvin element. On the other hand, a comparison of the modified
Debye model with the DiMarzio-Bishop and the model by Tschöpe
et al. justifies this simple approach. For comparison, the Raikher model
– especially if extended by distributions of hydrodynamic particle
diameter and viscosity – requires much larger computational effort. In
addition, the equations in the Raikher paper suffer from some
inconsistencies in the limit of vanishing elasticity.
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