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In our work, we investigate the possibility of a polynomial interpolation of the Magnetic Particle Imaging
(MPI) signal to parameterize the harmonic content of the signal to analyze the imaging quality at a
limited number of harmonics. The traditional Taylor expansion of the magnetization curve is limited by a
radius of convergence which is exceeded by the physical properties of real nanoparticle ensembles and
MPI setups. This led us to the derivation of an alternative method using polynomial interpolation. Our
method enabled us to express MPI signals based on the analytical Langevin function as well as numerical
simulated data using other magnetization functions and a phase shift in relation to the excitation signal.
The argument range of the interpolation function is wide enough to cover real cases. We conclude that
the polynomial interpolation method represents a versatile tool to describe the relation between the
magnetization curve and the MPI signals.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic Particle Imaging (MPI) is an imaging method to vi-
sualize magnetic nanoparticles (MNP), so-called MPI tracers, in the
body. It is based on the detection of higher harmonics induced by
the nonlinear magnetization curve and the time lag of the mag-
netic moment of an ensemble of MPI tracers in an oscillating
magnetic field. An additional gradient field ensures specific har-
monics of the tracer signal at every tracer location. Decomposing
the total MPI signal into the characteristic contribution from each
voxel allows a spatial reconstruction of the MNP amount.

To analyze the MPI signal one approach is to use a polynomial
expression of the magnetization function modeled by the Langevin
function based on the Taylor expansion [1,2]. This approach has the
main advantage that the creation of harmonics can easily be observed
via analysis of the polynomial coefficients and basically would be a
powerful tool to investigate the connection between magnetization
curve andMPI spectrum. Yet, there are disadvantages: the approach is
not capable of projecting the time lag of the response of MNP and
therefore could only describe (quasi)static signals. Furthermore, it is
restricted to the use of the Langevin equation where it exhibits a
radius of convergence of (�π,þπ) for the expansion, caused by the
polynomial description of f(x)¼coth(x) [2].
t).
We present a new approach to interpolate the measured or
simulated MPI signal using a set of polynomial coefficients. Our
approach enables us to express the phase shift of the MPI signals
and is not limited to a small radius of convergence.

In this paper, we will describe how to derive the set of poly-
nomial coefficients for a given number of polynomials and how to
apply this method to measured and simulated data.
2. Method

As a very simple approximation the M(H) behavior of MPI
tracers can be described by the Langevin function L(x):

= −L x x x( ) coth ( ) 1/ (1)
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Here, m is the magnetic moment, H is the magnetic field strength,
μ0 is the magnetic vacuum permeability, kB is the Boltzmann
constant and T is the temperature. The magnitude of x is directly
proportional to the magnetic moment m and the magnetic field
strength H and therefore determines the steepness of the M(H)
curve of an MNP ensemble at H¼0. It can be seen that this model
does not consider the magnetic anisotropy and therefore the time
lag of the magnetic response is not taken into account. Still for
some applications this model is sufficient.
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Fig. 1. Signal intensity in dependence on the position and harmonic number.
Fig. 3. Comparison of the Langevin function and its corresponding polynomial
expression with N¼7 and ξ¼[�15,þ15].
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One of the most basic methods to describe functions is the
polynomial description by a Taylor expansion. Applying this ex-
pansion on the Langevin function L(x) around the point x¼0 yields
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Since MPI uses an oscillating drive field, x can be written as
x¼xmax sin(ωt). Using the relation

∑=
=

x K nxsin ( ) sin ( )
(4)
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it is possible to control the number of harmonics in the process
which are later used in the image reconstruction.

This limitation of harmonic content is needed for simulations
regarding the relation between image quality (i.e. the resolution)
and the amount of available harmonics for image reconstruction,
as we expect the image quality to be dependent on the amount of
harmonics above noise [3].

Fig. 1 depicts the signal characteristics of the first five harmo-
nics at different locations of the field of view for the Langevin
function. Every harmonic has a limited number of maxima and
minima. Our hypothesis is that the amount of maxima and minima
of the highest measurable harmonic above noise is related to the
Fig. 2. Amplitude of the Langevin function compared to the amplitude of the
corresponding Taylor approximation in the range ξ¼[�3.5,þ3.5].
achievable resolution and the display of more MNP maxima than
harmonic maxima is not possible.

A real M(H) curve differs from the simplistic Langevin model.
Furthermore, the MPI signal exhibits a time lag in magnetization with
respect to the drive field and, as mentioned before, the Taylor ex-
pansion method is only applicable in a radius of convergence of 7π
(Fig. 2).

To preserve the advantages of a polynomial description of the MPI
signal we describe the magnetization M(x(H))¼M(x(Hm))¼M(x(H0…
HG)) as a system of linear equations:
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with M(x) as the measured or calculated magnetization, the pre-
factors a and the polynomials x2nþ1. Solving this linear equations
system, one can obtain the vector of coefficients an that describes
the magnetization.

This method is a suitable tool to describe the static magneti-
zation or magnetic moment either from simulations or from actual
measurements. The approach reaches its limit at the description of
a dynamic magnetic moment that is phase shifted in relation to
the excitation signal. In order to include phase shifts we extend Eq.
(5) by a set of cosine terms:
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This yields the possibility to not only parameterize static but also
the dynamic magnetic moment as it is needed in a proper MPI
simulation.

Then, the description of the signal is given by
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Fig. 4. Comparison of a time shifted simulated magnetic moment and its corresponding polynomial expression in relation to the excitation signal.
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Using Eq. (4) and its cosine counterpart Eq. (7) can be rewritten
as

∑= +⁎
=

m x K nx K nx( ) sin ( ) cos ( ) (8)N n

N
n n1 ,1 ,2

Summing up the fractions of Kn,1 and Kn,2 for a given n of all
polynomials the overall components for the n-th harmonic Cn,1
and Cn,2 are calculated, which can be transformed to the classic
harmonic notation.
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We therefore conclude that a contribution of a certain number
of polynomials corresponds to the same number of harmonics in
the MPI signal.
3. Simulation results

Using this method, Fig. 3 depicts the Langevin function com-
pared to its resulting parameterization with seven polynomials
and ξ¼[�15,15] with M(ξ)¼2.7 sin(πξ/2ξmax)�5.6 sin3

(πξ/2ξmax)þ6.7 sin5(πξ/2ξmax)�2.9 sin7(πξ/2ξmax). Note that the
polynomials with even exponent are set to zero due to the sym-
metric nature of the M(H) curve, comparable to the harmonics. It
can be seen that the constraints concerning the radius of con-
vergence can be bypassed and a parameterization of the signal up
to ξ¼715 is not a problem anymore. In comparison of Figs. 2 and
3 one can see that the classic Taylor approximation results in a
very close fit inside the radius of convergence and diverged out-
side of the radius. On the other side we can see a slight oscillation
of the parameterization using our method over the whole range
described here, but without complete divergence of the
interpolation.

This indicates a need for more polynomials for a better de-
scription of the Langevin function up to ξ¼715 which means that
this signal is not suitably described with only seven harmonics.
Fig. 4 depicts a simulated magnetic moment which is time
shifted in relation to the magnetic excitation field. Using our ex-
tended model, we can describe the simulated magnetic moment
using sine and cosine polynomials up to sin5 and cos5, respectively.

It can be seen that the parameterization describes the simu-
lated signal nearly perfectly with polynomials up to the fifth
degree. Due to the direct correlation between polynomials and
harmonics the deviation in the parameterization gives us an es-
timation of the potential imaging quality of the tracer since a high
deviation indicates the need for higher polynomials (and therefore
harmonics) to describe the signal.
4. Discussion

We proposed a method to describe the measured or simulated
signal of the magnetic moment using a set of polynomials for in-
terpolation of the M(H) curve. With our method we were able to
bypass the limitations of the Taylor expansion which is usually
used to describe a function as a series.

Thus, we interpolated the Langevin function without the
aforementioned limitation of the radius of convergence as well as
numerically simulated magnetization curves.

This method gives us the opportunity to manually limit the
amount of harmonics via the amount of polynomials. This manual
limitation enables us to draw first conclusions about the imaging
quality of the tracer.

We believe that this method might be suitable for the para-
meterization of simulation data and will be a tool for our future
work on the connection of measureable harmonics and image
resolution.
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