Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

Jennifer Sherwooda, Yaolin Xua, Kira Lovasa, Ying Qinb, Yuping Baba

a Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
b Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487, USA

A R T I C L E I N F O

Keywords:
Magnetic nanoparticles
Conjugation
Biomedical applications
Zwitterionic surface chemistries

A B S T R A C T

We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl) aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

1. Introduction

Iron oxide nanoparticles (NPs) have been widely studied for biological and biomedical applications, including targeted drug delivery [1], cell tracking [2–5], and as magnetic resonance imaging (MRI) contrast agents [6–9]. For all these applications, surface functionalities of NPs are critical because they are the first encounter with biological systems. For instance, surfaces directly affect cellular uptake [10], biodistribution [11], blood circulation [12], toxicity [13], and metabolism [14]. Many of these biological behaviors can be attributed to the ability of NPs attracting native proteins, also known as protein corona, and subsequently intriguing immune responses [15,16]. Two effective surface coatings have been explored to overcome the surface effects, such as PEGylation [17] and the use of zwitterionic molecules [18]. The dense, hydrophilic layer of the polyethylene glycol (PEG) on NP surfaces minimizes NP aggregation under physiological conditions, and, additionally, the net neutral charge of the PEGylated NPs at physiological pH can reduce the formation of protein corona [19]. Alternatively, the neutrally charged surfaces of NPs coated with zwitterionic molecules is capable of repressing non-specific absorption of proteins onto NP surfaces [20]. Therefore, it is highly beneficial to have a functional NP surface, which allows for easy conjugation of various surface chemistries for desirable applications.

Several conjugation methods have been studied to link various molecules onto iron oxide NP surfaces, including proteins, PEG, and other small molecules [21–28]. The use of chemical linkers to cross-link NPs and molecules has been the most explored approach [29,30]. These linkers include carbodiimide (EDC) [31,32], N-hydroxysuccinimide (NHS) ester cross-linker [33], and maleimide [34,35]. A general drawback for linker chemistry is the specific conjugation conditions and low conjugation efficiency, such as acidic conditions (pH 4.5–5.5) for EDC, pH 7.2–8.0 at 4 °C for NHS. The low conjugation efficiency is mainly a result of completion reactions. We recently showed that dopamine-functionalized surfaces of iron oxide NPs can easily conjugate with protein molecules [36,37], which also offers a great platform to link other molecules.

In this paper, we report the direct conjugation of various molecules onto dopamine-coated iron oxide NP surfaces via a facile, linker-free conjugation method previously developed by our group [38]. These small molecules include glutathione (GSH), cysteine (Cys), lysine (Lys), and Tris(hydroxymethyl)aminomethane (Tris), which lead to various surface functionalities after conjugation. At physiological pH, these molecules are either zwitterionic ions or neutrally charged, which can potentially suppress the formation of the protein corona in vitro and in vivo. The success of conjugation was evaluated using Fourier transform infrared spectroscopy (FTIR). The hydrodynamic size and zeta potentials of the NPs were also measured at different pHs, and compared with dopamine-coated NPs. Stability of conjugated NPs in biological medium was tested as a function of incubation times. The variation in NP sizes and charges was mainly used to determine whether the
conjugated NPs affect surface protein adsorption. The study provides a general platform to link various small molecules onto iron oxide NPs, which provides a set of NPs for various biological and biomedical studies.

2. Experimental

2.1. Dopamine-coated nanoparticles

The spherical iron oxide NPs were synthesized via thermal decomposition following our previously established procedures [39]. Specifically, an iron oleate precursor was decomposed in the presence of oleic acid (OA) and triocylphosphine oxide (TOPO) at 320 °C for 2.5 h. Subsequently, the hydrophobic ligands of NPs were replaced with dopamine molecules via a ligand exchange method with some modifications [36,37,39,40]. In brief, 1 mL of as-synthesized iron oxide NPs in chloroform (5 mg/mL) was mixed with 2 mL of dopamine aqueous solution (3 mg/mL). The mixture was sonicated for 5 min to form an emulsion, followed by the addition of 15 mL of acetone to facilitate phase transfer. The NPs were then separated out of solution via magnetic separation and washed three times with water to remove free dopamine. The dopamine-coated NPs were then dispersed in water to form a stock solution of (1 mg/mL). Before conjugation, the NP surfaces were activated with addition of NaOH, where the pH increase facilitates the formation of quinone structure from the catechol groups of dopamine. The quinone structure allows for facile conjugation of molecules containing –NH₂ or –SH groups via Schiff base or Michael’s addition [38].

2.2. Conjugation of small molecules

Small molecule conjugation was achieved by simply mixing the activated NP solution with conjugation molecules at a 1:10 molar ratio based on the theoretical amount of dopamine on the NP surfaces. The use of excess small molecules allows for full coverage of NP surfaces with conjugating molecules. NP aqueous solution was degassed using Argon gas prior to the conjugation to prevent oxidation of some small molecules. In order to ensure maximum conjugation efficiency, NPs were activated immediately prior to conjugation with the addition of NaOH to adjust the pH to 9. The reaction mixture of activated NPs and small molecules were incubated at 37 °C for 12 h. After three washes with water, the conjugated NPs were collected for further analysis. NPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FTIR) to verify the presence of the small molecules on the surface of the NPs.

The stability of the NPs was assessed by dispersing conjugated NPs in 10% fetal bovine serum (FBS) Eagle’s minimal essential medium (EMEM) and incubated at 37 °C for up to 4 h. The 4 h incubation was chosen based on prior reports that 4 h incubation is required for in vitro cellular uptake [13,38]. DLS measurements (size and zeta potential) were performed at t=0, 30 min, 2 h, and 4 h to determine if the NPs experienced non-specific binding of serum proteins on the NPs surfaces.

3. Results and discussion

The iron oxide NPs were synthesized via thermal decomposition at high temperature in organic solvent, which produced monodisperse, highly crystalline NPs. Subsequently, the organic ligands were replaced with dopamine where a thin polydopamine layer likely formed, leaving the catechol groups on the NP surface for further conjugation. Fig. 1a shows the TEM image of 12 nm dopamine-coated iron oxide NPs from a typical reaction. The NPs were well dispersed after ligand exchange and retained their high crystallinity (Fig. 1, insert). The hydrodynamic size of the dopamine-coated NPs in solution at pH 6 from DLS was about 38 nm (Fig. 1b), which was much larger than the core size of 12 nm. The size increase was possibly resulted from either hydrogen bond formation between neighboring catechol groups or formation of a thin layer of polydopamine during the ligand exchange [37]. With
increasing solution pH to 9, the NP size decreased to 31 nm because of deprotonation of surface functional groups, which helped to further separate NPs from each other (Fig. 1b).

The dopamine-coated NPs were stable at pH 9 for long periods of time, but showed visible precipitation at pH below 6. The zeta potentials of these NPs at pH 6 and 9 were about \(-33\) mV and \(-40\) mV respectively (Fig. 1c). The slightly lower zeta-potential at pH 9 is another indication of more deprotonation of catechol groups at higher pH. However, the absolute zeta-potential values of these NPs at pH 6 and 9 were both above 30, an indication of NP stability in solution. Fig. 1d shows the FTIR spectra of dopamine-coated NPs after activation. The detailed analysis of the dopamine-coated NPs before and after surface activation was reported previously by our group [41].

In brief, the characteristic peak at 3400 cm\(^{-1}\) corresponded to the catechol of dopamine. The peaks for aromatic C=C bonds appeared around 1400 cm\(^{-1}\) with a strong \(-\text{CH=CH}^-\) ring breathing mode around 930 cm\(^{-1}\). The characteristic \(-\text{C=O}\) band in Quinone structure at 1620 cm\(^{-1}\) was an indication of successful activation of dopamine.

Fig. 2. Conjugated NPs with GSH (a, e, i, and m1), Cys (b, f, j, and m2), Lys (c, g, k, and m3), and Tris (d, h, l, and m4). (a–d) TEM images, (e–h) DLS plots pH 6 (dashed blue) and 9 (black), (i–l) zeta potential plots at pH 6 (dashed blue) and 9 (black), (m) FTIR spectra, and (n) detailed scan of FTIR spectra in the range of 900–1800 cm\(^{-1}\). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
molecules on NP surfaces. The lack of the typical phenol alcohol band at 1065 cm$^{-1}$ was another indication of successful activation. The absorption bands at lower wavenumbers (590 and 433 cm$^{-1}$) were related to Fe–O bonds in the tetrahedral and octahedral sites. The tetrahedral sites have a lower bond length with expected higher related to Fe disappearance of the characteristic aromatic Tris (m4) respectively. Additionally, all 4 FTIR spectra showed the those peaks to 2400 cm$^{-1}$ because both of them contain thiol groups with characteristic peaks at 1010 cm$^{-1}$ and the aromatic C=C stretching. Fe-O stretching (for intrinsic Fe-O stretching is normally around 400 cm$^{-1}$ with a much weaker intensity [42].

After conjugated with various small molecules, the size and size distribution of NPs were not affected (Fig. 2a–d). In addition, the conjugated NPs were well dispersed without evident aggregations. Because of the small sizes of conjugating molecules, the hydrodynamic sizes of NPs did not show significant variations (Fig. 2e–h). However, the zeta-potential of the NPs was altered greatly after conjugation (Fig. 2i–l). Compared to the zeta-potentials of −33 mV and −40 mV at pH 6 and 9 for dopamine-coated NPs, the zeta-potentials of conjugated NPs at pH 6 and 9 were −7 and −23 mV for GSH conjugation, −11 and −35 mV for Cys conjugation, −7 and −27 mV for Lys conjugation, and 6 and −35 mV for Tris conjugation. The changes in zeta-potentials was an indication of successful conjugation. Because the activated dopamine molecules interact with amine and thiol groups, the conjugation of GSH, Cys, and Lys generated zwitterionic forms, where the surface charges change with pH. In contrast, the conjugation of Tris, generated close to neutral surface at pH of 6 and more negatively charged surface at pH 9.

The conjugation of GSH, Cys, Lys, and Tris onto dopamine-coated NP surfaces were evaluated with FTIR as shown in Fig. 2m. FTIR spectrum for Tris was similar to spectrum of dopamine-coated NPs, but without the aromatic C=C peaks. The appearance of the characteristic C=O stretching (for −OH) at 1010 cm$^{-1}$ also suggested Tris attachment. FTIR spectrum for Lys conjugated NPs exhibited strong peaks at 2918 and 2840 cm$^{-1}$ compared to other conjugations. These peaks were characteristic −C–C– stretching, arising from the long C=C side chain of Lys.

The non-specific serum protein adsorption of conjugated NPs was studied in EMEM medium at physiological pH and compared with dopamine-coated NPs. The DLS plots of NPs were measured at incubation time of 0, 30 min, 2 h and 4 h (Fig. 3). Dopamine-coated NPs showed an initial size increase from 31 to 48 nm and a significant drop in surface charge from −40 to −20 mV. After 4 h incubation, the hydrodynamic size of dopamine-coated NPs increased to 56 nm with an overall size increase of 25 nm. GSH-conjugated NPs showed an initial increase in size of about 10 nm and maintained this size throughout the entire 4 h. Cys-conjugated NPs experienced an initial size increase of 5 nm. Interestingly, NPs had a reduction of size with a narrower size distribution with increasing incubation time. Only 3 nm size increase was observed after 4 h incubation. Lys-conjugated NPs displayed an initial size increase of 6 nm. Similar to the Cys-conjugated NPs, a decrease in size with narrower size distribution was observed with respect to incubation time. Tris-conjugated NPs exhibited an initial size increase of 11 nm and maintained that size throughout the 4 h study. For all of the conjugated NPs, the zeta potentials were close to neutral. It was difficult to differentiate whether surface charge change resulted from protein absorption or pH effects, because the pH had a major effect on the charge of the conjugated NPs at different pHs. The hydrodynamic sizes of conjugated NPs all showed an initial size increase, but without significant variation with increasing incubation time, likely because of the Zwitterionic or neutral surfaces. The proteins may have initially bound to the surfaces, but once the net charge of the ligands became neutral, additional protein absorption was prevented. In contrast, dopamine-coated NPs showed a large increase in size and drop in zeta potential. Therefore, we believe that the conjugated NPs exhibited increased stability in physiological.
conditions compared to dopamine-coated NPs, which could potentially reduce non-specific protein adsorption on the NPs surfaces and potentially increase in vivo circulation time.

4. Conclusion

In summary, we have demonstrated effective conjugation of four amine/thiol containing small molecules onto dopamine-coated iron oxide NP surfaces via Schiff base or Michael's addition. By attaching either GSH, Cys, Lys, or Tris to NP surfaces, different surface functionalities were achieved as confirmed by FTIR spectra. In addition, the surface charges of NPs can be adjusted with pH depending on the surface coatings. Importantly, the surface conjugation resulted either Zwitterionic or neutral surfaces, which increase the NP stability in solution and minimized absorption of serum proteins in cell. Therefore, the conjugation can potentially increase in vivo circulation time due to reduced immune response. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide NP surfaces for biomedical applications.

Acknowledgements

This work was supported in part by U.S. National Science Foundation (DMR1149931). We acknowledge the UA Central Analytical Facility (CAF) and the Biological Science Department for the use of TEM.

References

