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We explored the effect of viscosity on harmonic signals from a magnetic fluid. Using a numerical si-
mulation that accounts for both the Brownian and Néel processes, we clarified how the magnetization
mechanism is affected by viscosity. When the excitation field varies much slower than the Brownian
relaxation time, magnetization can be described by the Langevin function. On the other hand, for the case
when the excitation field varies much faster than the Brownian relaxation time, but much slower than
the Néel relaxation time, the easy axes of the magnetic nanoparticles (MNPs) turn to some extent toward
the direction of the excitation field in an equilibrium state. This alignment of the easy axes of MNPs
caused by the AC field becomes more significant with the increase of the AC field strength. Consequently,
the magnetization is different from the Langevin function even though Néel relaxation time is faster than
time period of the external frequency. It is necessary to consider these results when we use harmonic
signals from a magnetic fluid in a high-viscosity medium.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Magnetic nanoparticles (MNPs) in solution, i.e., magnetic fluids,
have been widely studied for biomedical applications such as se-
paration of biological targets, immunoassays, drug delivery, hy-
perthermia, and magnetic particle imaging (MPI) [1]. MPI presents
a new modality for imaging the spatial distribution of MNPs,
especially for in-vivo diagnostics [2]. Thus far, several methods,
such as harmonic-space MPI [2–4], narrowband MPI, [5] and x-
space MPI [6,7], have been introduced to reconstruct the image of
the spatial distribution of the MNPs in MPI. In harmonic-space
MPI, harmonic signals generated by the nonlinear magnetization
of MNPs exposed to both an AC excitation field and a DC gradient
field are detected to image the spatial distribution of MNPs.

In order to characterize or optimize the MNPs for MPI appli-
cation, harmonic magnetization signals from MNPs have been
studied. In Ref. [8], the Langevin function, which describes the
static magnetization of superparamagnetic MNPs, was used to
evaluate the harmonic signals. In order to take the finite relaxation
time into account, a modified Langevin function was used in Refs.
[9,10]. However, this modified Langevin function has not been
theoretically established. On the other hand, in Ref. [11], the sto-
chastic Landau–Lifshitz–Gilbert (LLG) equation, which takes into
account thermal fluctuations, was used to evaluate the harmonic
signals from MNPs for MPI application. While the stochastic LLG
hida).
equation describes the dynamic behavior of the magnetization of
MNPs, the numerical simulation in Ref. [11] was restricted to the
case of immobilized MNPs.

It is well recognized that magnetization in a magnetic fluid
occurs via Néel and Brownian processes. Since the Brownian re-
laxation time is proportional to the viscosity of the surrounding
medium and the viscosity may change in practical applications, it
is important to investigate the effect of viscosity on the harmonic
signals from a magnetic fluid.

In this study, we investigate the dynamic behavior of MNPs by
considering both the Néel and Brownian relaxations. We first
show that the measured third harmonic signals from two mag-
netic fluid samples with different viscosities exhibit different
properties. Then, the effect of viscosity on the mechanism of
magnetization in the magnetic fluid is clarified with a numerical
simulation. Finally, based on the numerical simulation results, we
obtain some empirical equations for the magnetization of MNPs.
2. Experimental

2.1. Materials and methods

In the experiment, commercial MNPs called Resovist (FUJIFILM
RI Pharma) were used as samples. Resovist is a hydrophilic col-
loidal solution of Fe3O4/γFe2O3 nanoparticles coated with car-
boxydextran, which has a primary core diameter in the range of 5–
10 nm. It consists of clusters of elementary particles. The iron
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Fig. 1. Experimental results of the third harmonics vs. DC field when an excitation
field with μ0Hac¼3 mT and f¼1 kHz was applied. Samples 1 and 2 were diluted
with pure water and glycerol, respectively.
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concentration of the original Resovist magnetic fluid is 27.875 mg
(Fe)/ml.

To investigate the effect of viscosity on harmonic signals from a
magnetic fluid, we prepared two samples. In sample 1, 60 μl of the
Resovist magnetic fluid was diluted in 230 μl of pure water, while
in sample 2, 230 μl of glycerol was substituted in place of water.
These two samples differ in viscosity.

In the experiment, an external field, H¼Hdcþ√2Hacsin(2πft),
was applied via an excitation coil. The magnetic signal from the
MNPs was detected using an inductive pickup-coil gradiometer
installed concentrically with the excitation coil. In order to avoid
interference from the excitation field, a first-order gradiometer
was used.
2.2. Experimental results

In Fig. 1, experimental results of the third harmonic signal vs.
DC field are shown. AC excitation field with μ0Hac¼3 mT and
f¼1 kHz was applied. As shown, the DC field dependence of the
third harmonic was different between the two samples, which
indicated that viscosity affected the third harmonic signal. Since
the DC field dependence of the harmonic signal is directly related
to the spatial resolution in MPI, this result implies that spatial
resolution is also affected by the viscosity of the magnetic fluid.

We note that the vertical axis, M3, represents the absolute value
of the third harmonic signal. It can be shown from the Langevin
function that the third harmonic signal decreases, becomes zero at
a certain DC field, and then becomes negative values when the DC
field is increased [12]. Therefore, if we plot the absolute value of
the third harmonic signal, it shows the sharp minimum at a cer-
tain DC field, as shown in Fig. 1.
3. Numerical simulation

3.1. Methods

We performed numerical simulations to study the mechanism
causing the difference in third harmonics between samples 1 and
2. When the MNPs can rotate physically, the dynamics of the
magnetic moment is determined by a combination of Brownian
and Néel processes.
The dynamics of a unit vector along the easy axis →n is given by
the Langevin equation [13]
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where η is the viscosity of the surrounding medium, dh is the
hydrodynamic size of the MNP, →m is the magnetic moment vector
of the MNP, and kBT is the thermal energy. The random torque, Γ

→
,

on the MNP caused by thermal fluctuations satisfies the following
equations:
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Here,〈〉 represents the average over an ensemble, i and j are
Cartesian indices, δij is the Kronecker delta function, and δ is the
Dirac delta function.

On the other hand, the dynamics of the magnetic moment
vector →m is given by [13]
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Eq. (4) is a stochastic LLG equation in which thermal fluctua-
tions are taken into account.

The dynamic behavior of the magnetic moment as well as the
easy axis for a single MNP can be calculated by solving Eqs. (1) and
(4) simultaneously. In the simulation, Eqs. (1) and (4) were dis-
cretized with respect to time t. The discretization interval Δt was
set to 0.01τN0, and the value λ¼0.1 was used. Here, τN0¼m/(2γλE
B)¼10�9 is the characteristic Néel relaxation time, EB¼Kπdc3/6 is
the anisotropy energy barrier, K is the anisotropy constant, and dc
is the core size of the MNP. The dynamics of the magnetic moment
vector →m and unit vector along the easy axis →n were calculated for
N¼7168 MNPs. Consequently, the average value 〈

→m〉 over the en-
semble was obtained. The numerical simulation was carried out
until an equilibrium magnetization was obtained. The harmonic
spectrum of the magnetization was obtained by performing a
Fourier transform on this equilibrium magnetization.

For simplicity, we assumed that all the MNPs have the same
values of m and EB in the simulation, although the real Resovist
sample has a size distribution. In Ref. [11], it was shown that Re-
sovist MNPs with 15 nmodco40 nm size distribution exhibited a
rich harmonic spectrum. Therefore, we set dc¼28 nm in the si-
mulation. Further, Ms¼360 kA/m, K¼4 kJ/m3, and tco¼7 nm were
used, as described in Ref. [11]. Here, tco¼(dh�dc)/2 is the thickness
of the coating material. The Néel relaxation time was calculated to



Fig. 2. Numerical simulation results of the third harmonics vs. DC field when an
excitation field with μ0Hac¼3 mT and f¼1 kHz was applied. Circles and squares
show the numerical simulation results with stochastic Eqs. (1) and (4) for samples
1 and 2, respectively. The dotted line is calculated with the Langevin function. The
solid line is calculated using Eqs. (15)–(18).
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be τN¼τN0exp(EB/kBT)¼6.7�10�5 s at T¼300 K, and the magnetic
moment was calculated to be m¼Msπdc3/6¼4.14�10�18 A m2.
Assuming that the values of viscosities of sample 1 diluted with
pure water and sample 2 diluted with glycerol are 1 mPa s and
100 mPa s, respectively, Brownian relaxation times were calcu-
lated to be τB¼ηdh3/2kBT¼2.8�10�5 s for sample 1 and
Fig. 3. (a) Simulation results of the behaviors of the easy axes of samples 1 and 2 in an e
distribution of easy axes of sample 2 when the AC field is applied.
τB¼2.8�10�3 s for sample 2. We confirmed that these Brownian
relaxation times used in the numerical simulation are reasonable
by measuring the frequency dependences of the AC susceptibilities
of samples 1 and 2.

3.2. Simulation results

3.2.1. DC field dependence of the harmonic signal
In Fig. 2, we show simulation results of the DC field depen-

dence of the harmonic signal obtained for samples 1 (circles) and 2
(squares) when an AC field of μ0Hac¼3 mT is applied. The dotted
line was calculated using a Langevin function with
m¼4.14�10�18 A m2. The simulation result for sample 1 (circles)
agreed well with the Langevin function. On the other hand, the
simulation result for sample 2 (squares) was very different from
that expected from the Langevin function. The third harmonic
signal decreased with increasing DC field more rapidly than the
Langevin function. We note that such strong field dependence was
observed in the experiment, as shown in Fig. 1.

3.2.2. Behaviors of the easy axes
In order to study the effect of viscosity in more detail, we first

discuss the behaviors of the easy axes of MNPs when an AC field is
applied. In Fig. 3(a), simulation results of the behaviors of the easy
axes in an equilibrium state are shown for Hdc¼0 and μ0Hac¼3 mT
with f¼1 kHz. Here, we define θea,i as the angle between the
quilibrium state when Hdc¼0 and μ0Hac¼3 mT with f¼1 kHz. (b) Schematic of the



Fig. 4. (a) Traces of the easy axes of sample 2 in an equilibrium state when the
values of Hac are changed from μ0Hac¼1–5 mT with Hdc¼0. (b) Dependence of 〈
cos θea〉 on Hac.

Fig. 5. Probability density of MNPs, Wea(θea) sin θea, as a function of the angle θea.
Symbols represents simulation result, while solid line represents a distribution of
θea calculated with Eq. (10) when sample 2 was exposed to an AC field with μ0Hac

¼3 mT. The dotted line represents the distribution of θea for the case when the easy
axes are randomly orientated.
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direction of the easy axis→n of the ith particle and the external field
⎯→⎯
H . The value of 〈cos θea〉, which is an ensemble average over N
particles, is calculated as

∑θ θ=
=

t
N

tcos ( )
1

cos ( ).
(9)

ea
i

N

ea i
1

,

Fig. 3(a) represents the trace of 〈cos θea〉 as a function of μ0H
(t)¼μ0√2Hac sin (2πft). As can be seen, for sample 1, 〈cos θea〉
changes with respect to the external field H(t). This indicates that
the ensemble average of the angle of the easy axis rotates with the
external field H(t). We note that this rotation is caused by the
Brownian rotation of MNPs. Since τB for sample 1 is smaller than
the inverse of the excitation frequency, f, it is natural that mag-
netization occurs via the Brownian process.

On the other hand, for sample 2, 〈cos θea〉 is almost constant, as
shown in Fig. 3(a). This indicates that the ensemble average of the
angle of the easy axis does not rotate with the external field H(t) in
an equilibrium state. This is because the Brownian rotation of
MNPs is prohibited: τB of sample 2 is much larger than the inverse
of the excitation frequency, f. In this case, magnetization occurs via
the Néel process because τNo1/2πf.

However, it should be noted that the easy axes for sample 2 are
not randomly orientated. We note that ocos θea4¼0.5 when the
easy axes are randomly orientated. However, for sample 2,
ocos θea4 is around 0.69, as shown in Fig. 3(a). This indicates
that easy axes are orientated toward the direction of the excitation
field.

Fig. 3(b) shows the schematic of the distribution of easy axes of
sample 2 when the AC field is applied. Before applying the AC field,
i.e., in the initial state, the easy axes are randomly oriented. On
applying the AC field, the easy axes turn to some extent toward the
direction of the excitation field in an equilibrium state, as sche-
matically shown in Fig. 3(b). Mamiya et al. first reported this in-
teresting phenomenon [14]. In short, for the case τN«1/2πf«τB, the
AC field gradually rotates the easy axes towards the direction of
the excitation field.

We investigated how the value of 〈cos θea〉 of sample 2 depends
on the strength of the external field. Fig. 4(a) represents the traces
of 〈cos θea〉 when Hac changed from μ0Hac¼1–5 mT with Hdc¼0.
Fig. 4(b) shows the dependence of 〈cos θea〉 on Hac. As shown, 〈
cos θea〉 is around 0.5 when μ0Hac¼1 mT, indicating that the easy
axes are randomly orientated in this case. When Hac was increased,
the value of 〈cos θea〉 increased to 0.8, indicating that orientation of
the easy axes towards the direction of the excitation field becomes
stronger with increasing Hac.

3.2.3. Distribution of the angle between →n and
⎯→⎯
H

As mentioned in Fig. 3, for the case of sample 2, the angle of the
easy axis in the equilibrium state, θea, is almost constant and in-
dependent of H(t). Following that result, in Fig. 5 the distribution
of θea for sample 2 is shown when Hdc¼0 and μ0Hac¼3 mT. Here,
the vertical axis represents the value of Wea(θea)sin θea, which
gives the probability density of MNPs with respect to θea. The
symbols show the simulation result. The dotted line shows the
curve of Wea(θea)sin θea¼sin θea, corresponding to the case when
the easy axes are randomly orientated.

As shown by the dotted line, the value of Wea(θea) sin θea has a
peak at θea¼90° when easy axes are randomly oriented. On the
other hand, the simulation result shows that the peak is obtained
at θea¼30°. This is because the easy axes are orientated toward the
direction of the excitation field.

As shown above, the easy axes gradually align along the AC
field. This is similar to the case when a DC field is applied.
Therefore, as in the case of the DC field, we assume that Wea(θea) is
given by the Maxwell–Boltzmann distribution [15]

θ ξ θ ξ θ= + −W W( ) [ exp ( cos ) exp ( cos )], (10)ea ea ac ea ac ea0

where ξac¼μ0mHac/kBT. The constant value W0 is calculated using

∫ ξ θ ξ θ+ − =π
W [ exp ( cos ) exp ( cos )] 1ac ea ac ea0

/2
0 . Note that the

second term on the right is added in Eq. (10) because we define
the region of θea from 0° to 90°.

The solid line in Fig. 5 shows Wea(θea) sin θea calculated with
Eq. (10). As can be seen, the calculated result agrees well with the
simulation depicted by symbols. Therefore, the empirical expres-
sion for Wea(θea) given in Eq. (10) will be used for the distribution
of the easy axes caused by the AC field.
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4. Discussion

4.1. M–H curve

We first discuss the effect of the distribution of the angle of the
easy axes, Wea(θea), on the magnetization. The static M–H curve
can be calculated as follows. For the MNPs, whose easy axis is
inclined by θea with respect to the external field, the static mag-
netization is given by [15]

∫ ∫

∫ ∫
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where α, given by cosα¼sin θea sin θ cos ϕþcos θea cos θ, is an
angle between the easy axis and magnetic moment →m of an MNP.
ξ¼μ0mH/kBT and s¼EB/kBT.

The total magnetization of the sample can be obtained by
summing M(θea) over all angles. Considering the distribution of
the easy axes, Wea, the total magnetization M in the direction of
the external field is given by
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θ θ θ θ

θ θ θ
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The static M–H curve calculated from Eqs. (11) and (12) is
shown in Fig. 6. The solid line is calculated using the simulation
result of Wea(θea) sin θea depicted by the symbols in Fig. 5. The
dash-dotted line represents the result obtained when we assume
that the easy axes are randomly orientated, i.e., for the case of
Wea(θea) sin θea¼sin θea. The dotted line represents a Langevin
function M/Ms¼cot h(ξ)-1/ξ, which can be obtained for the case of
s¼0.

As can be seen, the M–H curves obtained for the three cases are
different. This result indicates that the M–H curve is affected by
both the anisotropy energy barrier, s, and the distribution of the
easy axes, Wea(θea). As a result, a simple Langevin function cannot
explain the M–H curve of the sample 2.

4.2. Harmonic signals

Based on the above discussion, we calculated the third har-
monics for both samples. In sample 1, the Brownian process
dominates magnetization, which can be represented by the Lan-
gevin function. The third harmonic for sample 1 can be calculated
with the following equations:
Fig. 6. M–H curves. The solid line is calculated using Eqs. (11) and (12) with the
distribution of angle θea depicted by the symbols in Fig. 5. The dash-dotted line
represents an M–H curve for the case when easy axes are randomly orientated.
Dotted line represents a Langevin function.
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k T
H H ft( ) 2 sin (2 ) .

(14)B
dc ac
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The dotted line in Fig. 2 represents the dependence of third
harmonics on Hdc when μ0Hac¼3 mT. As shown, the result calcu-
lated from Eq. (13) agrees well with the simulation results ob-
tained using stochastic equations (Eqs. (1) and (4)).

In sample 2, magnetization is dominated by the Néel process,
as mentioned previously. When Néel relaxation time is much less
than the inverse of the excitation frequency f, magnetization fol-
lows the external field without a phase lag. Therefore, in a manner
similar to the static case given in Eqs. (11) and (12), magnetization
M(t) is given by
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We tentatively assume that the distribution of the easy axes,
Wea(θea), is determined by the parameter ξeff given in Eq. (17)
when both AC and DC fields are applied. Then, by performing the
Fourier transform, the third harmonics for sample 2 can be cal-
culated as

∫ π= ×M M M t M ft dt/ ( )/ sin (3 2 ) . (18)s
f

s3
0

1/

The solid line in Fig. 2 represents the dependence of third
harmonics on Hdc calculated using Eqs. (15)–(18) when μ0Hac

¼3 mT. As shown, the calculated result agrees reasonably well
with the simulation results of stochastic Eqs. (1) and (4).

Finally, we comment on the value of M3 between simulation
and measurement. As shown in Figs. 1 and 2, relative height of M3

for sample 1 and sample 2 was reversed between experimental
and simulated results. This reversal will be caused by the dis-
tribution of the particle size in the sample, which was not taken
into account in the present simulation. When the size distribution
exists, only a certain portion of MNPs in the sample can respond to
the AC excitation field. It is well recognized that the potion be-
comes larger in the case of Brownian relaxation, compared to the
case of Néel relaxation. This is because the dependence of the Néel
relaxation time on the particle size is much stronger than the case
of Brownian relaxation. In sample 1, MNPs were diluted with pure
water, and their behavior was dominated by Brownian relaxation.
On the other hand, MNPs were diluted with glycerol in sample 2,
and their behavior was dominated by Néel relaxation. Therefore,
we can expect that the signal from the sample 1 becomes larger
than that of sample 2, as shown in the experimental result (Fig. 1).
5. Conclusions

We explored the effect of viscosity on harmonic signals from a
magnetic fluid. First, we showed that the measured dependence of
the third harmonic signal on the DC external field is different
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between magnetic fluids diluted with glycerol and pure water. To
understand the mechanism that causes this difference, we per-
formed a numerical simulation based on the stochastic LLG and
Langevin equations, in which both the Brownian and Néel re-
laxations are taken into account. Using the simulation results, we
clarified how the magnetization mechanism is affected by the
viscosity of the fluid. For the case of τB«1/2πf, magnetization can be
described by the Langevin function. On the other hand, for the case
of τN«1/2πf«τB, the easy axes of the MNPs turn toward the direction
of the external field in an equilibrium state. Consequently, the
magnetization in a high-viscosity medium is different from the
Langevin function even though the Néel relaxation time is less
than the time period of the external field. The alignment of easy
axes of the MNPs caused by an AC field can be empirically ex-
pressed with Eq. (10).
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